Cargando…

3D-Printed GelMA/PEGDA/F127DA Scaffolds for Bone Regeneration

Tissue-engineered scaffolds are an effective method for the treatment of bone defects, and their structure and function are essential for bone regeneration. Digital light processing (DLP) printing technology has been widely used in bone tissue engineering (BTE) due to its high printing resolution an...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Jianpeng, Li, Ming, Cheng, Junyao, Liu, Xiao, Liu, Zhongyang, Liu, Jianheng, Tang, Peifu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962173/
https://www.ncbi.nlm.nih.gov/pubmed/36826895
http://dx.doi.org/10.3390/jfb14020096
Descripción
Sumario:Tissue-engineered scaffolds are an effective method for the treatment of bone defects, and their structure and function are essential for bone regeneration. Digital light processing (DLP) printing technology has been widely used in bone tissue engineering (BTE) due to its high printing resolution and gentle printing process. As commonly used bioinks, synthetic polymers such as polyethylene glycol diacrylate (PEGDA) and Pluronic F127 diacrylate (F127DA) have satisfactory printability and mechanical properties but usually lack sufficient adhesion to cells and tissues. Here, a compound BTE scaffold based on PEGDA, F127DA, and gelatin methacrylate (GelMA) was successfully prepared using DLP printing technology. The scaffold not only facilitated the adhesion and proliferation of cells, but also effectively promoted the osteogenic differentiation of mesenchymal stem cells in an osteoinductive environment. Moreover, the bone tissue volume/total tissue volume (BV/TV) of the GelMA/PEGDA/F127DA (GPF) scaffold in vivo was 49.75 ± 8.50%, higher than the value of 37.10 ± 7.27% for the PEGDA/F127DA (PF) scaffold and 20.43 ± 2.08% for the blank group. Therefore, the GPF scaffold prepared using DLP printing technology provides a new approach to the treatment of bone defects.