Cargando…
Skeleton-Based Fall Detection with Multiple Inertial Sensors Using Spatial-Temporal Graph Convolutional Networks
The application of wearable devices for fall detection has been the focus of much research over the past few years. One of the most common problems in established fall detection systems is the large number of false positives in the recognition schemes. In this paper, to make full use of the dependen...
Autores principales: | Yan, Jianjun, Wang, Xueqiang, Shi, Jiangtao, Hu, Shuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962182/ https://www.ncbi.nlm.nih.gov/pubmed/36850753 http://dx.doi.org/10.3390/s23042153 |
Ejemplares similares
-
Enhanced Spatial and Extended Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
por: Li, Fanjia, et al.
Publicado: (2020) -
Skeleton-Based Emotion Recognition Based on Two-Stream Self-Attention Enhanced Spatial-Temporal Graph Convolutional Network
por: Shi, Jiaqi, et al.
Publicado: (2020) -
Fast Temporal Graph Convolutional Model for Skeleton-Based Action Recognition
por: Nan, Mihai, et al.
Publicado: (2022) -
Shallow Graph Convolutional Network for Skeleton-Based Action Recognition
por: Yang, Wenjie, et al.
Publicado: (2021) -
TFC-GCN: Lightweight Temporal Feature Cross-Extraction Graph Convolutional Network for Skeleton-Based Action Recognition
por: Wang, Kaixuan, et al.
Publicado: (2023)