Cargando…
Transcriptome Profiling and Chlorophyll Metabolic Pathway Analysis Reveal the Response of Nitraria tangutorum to Increased Nitrogen
To identify genes that respond to increased nitrogen and assess the involvement of the chlorophyll metabolic pathway and associated regulatory mechanisms in these responses, Nitraria tangutorum seedlings were subjected to four nitrogen concentrations (N0, N6, N36, and N60: 0, 6, 36, and 60 mmol·L(−1...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962214/ https://www.ncbi.nlm.nih.gov/pubmed/36840241 http://dx.doi.org/10.3390/plants12040895 |
_version_ | 1784895948502073344 |
---|---|
author | Liu, Chenggong Duan, Na Chen, Xiaona Li, Xu Zhao, Naqi Cao, Wenxu Li, Huiqing Liu, Bo Tan, Fengsen Zhao, Xiulian Li, Qinghe |
author_facet | Liu, Chenggong Duan, Na Chen, Xiaona Li, Xu Zhao, Naqi Cao, Wenxu Li, Huiqing Liu, Bo Tan, Fengsen Zhao, Xiulian Li, Qinghe |
author_sort | Liu, Chenggong |
collection | PubMed |
description | To identify genes that respond to increased nitrogen and assess the involvement of the chlorophyll metabolic pathway and associated regulatory mechanisms in these responses, Nitraria tangutorum seedlings were subjected to four nitrogen concentrations (N0, N6, N36, and N60: 0, 6, 36, and 60 mmol·L(−1) nitrogen, respectively). The N. tangutorum seedling leaf transcriptome was analyzed by high-throughput sequencing (Illumina HiSeq 4000), and 332,420 transcripts and 276,423 unigenes were identified. The numbers of differentially expressed genes (DEGs) were 4052 in N0 vs. N6, 6181 in N0 vs. N36, and 3937 in N0 vs. N60. Comparing N0 and N6, N0 and N36, and N0 and N60, we found 1101, 2222, and 1234 annotated DEGs in 113, 121, and 114 metabolic pathways, respectively, classified in the Kyoto Encyclopedia of Genes and Genomes database. Metabolic pathways with considerable accumulation were involved mainly in anthocyanin biosynthesis, carotenoid biosynthesis, porphyrin and chlorophyll metabolism, flavonoid biosynthesis, and amino acid metabolism. N36 increased δ-amino levulinic acid synthesis and upregulated expression of the magnesium chelatase H subunit, which promoted chlorophyll a synthesis. Hence, N36 stimulated chlorophyll synthesis rather than heme synthesis. These findings enrich our understanding of the N. tangutorum transcriptome and help us to research desert xerophytes’ responses to increased nitrogen in the future. |
format | Online Article Text |
id | pubmed-9962214 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99622142023-02-26 Transcriptome Profiling and Chlorophyll Metabolic Pathway Analysis Reveal the Response of Nitraria tangutorum to Increased Nitrogen Liu, Chenggong Duan, Na Chen, Xiaona Li, Xu Zhao, Naqi Cao, Wenxu Li, Huiqing Liu, Bo Tan, Fengsen Zhao, Xiulian Li, Qinghe Plants (Basel) Article To identify genes that respond to increased nitrogen and assess the involvement of the chlorophyll metabolic pathway and associated regulatory mechanisms in these responses, Nitraria tangutorum seedlings were subjected to four nitrogen concentrations (N0, N6, N36, and N60: 0, 6, 36, and 60 mmol·L(−1) nitrogen, respectively). The N. tangutorum seedling leaf transcriptome was analyzed by high-throughput sequencing (Illumina HiSeq 4000), and 332,420 transcripts and 276,423 unigenes were identified. The numbers of differentially expressed genes (DEGs) were 4052 in N0 vs. N6, 6181 in N0 vs. N36, and 3937 in N0 vs. N60. Comparing N0 and N6, N0 and N36, and N0 and N60, we found 1101, 2222, and 1234 annotated DEGs in 113, 121, and 114 metabolic pathways, respectively, classified in the Kyoto Encyclopedia of Genes and Genomes database. Metabolic pathways with considerable accumulation were involved mainly in anthocyanin biosynthesis, carotenoid biosynthesis, porphyrin and chlorophyll metabolism, flavonoid biosynthesis, and amino acid metabolism. N36 increased δ-amino levulinic acid synthesis and upregulated expression of the magnesium chelatase H subunit, which promoted chlorophyll a synthesis. Hence, N36 stimulated chlorophyll synthesis rather than heme synthesis. These findings enrich our understanding of the N. tangutorum transcriptome and help us to research desert xerophytes’ responses to increased nitrogen in the future. MDPI 2023-02-16 /pmc/articles/PMC9962214/ /pubmed/36840241 http://dx.doi.org/10.3390/plants12040895 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Chenggong Duan, Na Chen, Xiaona Li, Xu Zhao, Naqi Cao, Wenxu Li, Huiqing Liu, Bo Tan, Fengsen Zhao, Xiulian Li, Qinghe Transcriptome Profiling and Chlorophyll Metabolic Pathway Analysis Reveal the Response of Nitraria tangutorum to Increased Nitrogen |
title | Transcriptome Profiling and Chlorophyll Metabolic Pathway Analysis Reveal the Response of Nitraria tangutorum to Increased Nitrogen |
title_full | Transcriptome Profiling and Chlorophyll Metabolic Pathway Analysis Reveal the Response of Nitraria tangutorum to Increased Nitrogen |
title_fullStr | Transcriptome Profiling and Chlorophyll Metabolic Pathway Analysis Reveal the Response of Nitraria tangutorum to Increased Nitrogen |
title_full_unstemmed | Transcriptome Profiling and Chlorophyll Metabolic Pathway Analysis Reveal the Response of Nitraria tangutorum to Increased Nitrogen |
title_short | Transcriptome Profiling and Chlorophyll Metabolic Pathway Analysis Reveal the Response of Nitraria tangutorum to Increased Nitrogen |
title_sort | transcriptome profiling and chlorophyll metabolic pathway analysis reveal the response of nitraria tangutorum to increased nitrogen |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962214/ https://www.ncbi.nlm.nih.gov/pubmed/36840241 http://dx.doi.org/10.3390/plants12040895 |
work_keys_str_mv | AT liuchenggong transcriptomeprofilingandchlorophyllmetabolicpathwayanalysisrevealtheresponseofnitrariatangutorumtoincreasednitrogen AT duanna transcriptomeprofilingandchlorophyllmetabolicpathwayanalysisrevealtheresponseofnitrariatangutorumtoincreasednitrogen AT chenxiaona transcriptomeprofilingandchlorophyllmetabolicpathwayanalysisrevealtheresponseofnitrariatangutorumtoincreasednitrogen AT lixu transcriptomeprofilingandchlorophyllmetabolicpathwayanalysisrevealtheresponseofnitrariatangutorumtoincreasednitrogen AT zhaonaqi transcriptomeprofilingandchlorophyllmetabolicpathwayanalysisrevealtheresponseofnitrariatangutorumtoincreasednitrogen AT caowenxu transcriptomeprofilingandchlorophyllmetabolicpathwayanalysisrevealtheresponseofnitrariatangutorumtoincreasednitrogen AT lihuiqing transcriptomeprofilingandchlorophyllmetabolicpathwayanalysisrevealtheresponseofnitrariatangutorumtoincreasednitrogen AT liubo transcriptomeprofilingandchlorophyllmetabolicpathwayanalysisrevealtheresponseofnitrariatangutorumtoincreasednitrogen AT tanfengsen transcriptomeprofilingandchlorophyllmetabolicpathwayanalysisrevealtheresponseofnitrariatangutorumtoincreasednitrogen AT zhaoxiulian transcriptomeprofilingandchlorophyllmetabolicpathwayanalysisrevealtheresponseofnitrariatangutorumtoincreasednitrogen AT liqinghe transcriptomeprofilingandchlorophyllmetabolicpathwayanalysisrevealtheresponseofnitrariatangutorumtoincreasednitrogen |