Cargando…
Transfer-Learning-Based Estimation of the Remaining Useful Life of Heterogeneous Bearing Types Using Low-Frequency Accelerometers
Deep learning approaches are becoming increasingly important for the estimation of the Remaining Useful Life (RUL) of mechanical elements such as bearings. This paper proposes and evaluates a novel transfer learning-based approach for RUL estimations of different bearing types with small datasets an...
Autores principales: | Schwendemann, Sebastian, Sikora, Axel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962409/ https://www.ncbi.nlm.nih.gov/pubmed/36826953 http://dx.doi.org/10.3390/jimaging9020034 |
Ejemplares similares
-
Deep Learning-Based Remaining Useful Life Estimation of Bearings with Time-Frequency Information
por: Liu, Bingguo, et al.
Publicado: (2022) -
Deep learning-based anomaly-onset aware remaining useful life estimation of bearings
por: Kamat, Pooja Vinayak, et al.
Publicado: (2021) -
Transfer Prediction Method of Bearing Remaining Useful Life Based on Deep Feature Evaluation under Different Working Conditions
por: Liu, Yongzhi, et al.
Publicado: (2023) -
Bearing Remaining Useful Life Prediction Based on Naive Bayes and Weibull Distributions
por: Zhang, Nannan, et al.
Publicado: (2018) -
Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification
por: Yang, Jinsong, et al.
Publicado: (2022)