Cargando…

Conductive and Thermo-Responsive Composite Hydrogels with Poly(N-isopropylacrylamide) and Carbon Nanotubes Fabricated by Two-Step Photopolymerization

Biocompatible and conductive polymer hydrogels are the subject of intensive research in the bioengineering field because of their use in bioelectronic devices and for the fabrication of electro-responsive tissues and drug delivery systems. In this study, we report the synthesis of conductive composi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ciarleglio, Gianluca, Toto, Elisa, Santonicola, Maria Gabriella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962410/
https://www.ncbi.nlm.nih.gov/pubmed/36850305
http://dx.doi.org/10.3390/polym15041022
Descripción
Sumario:Biocompatible and conductive polymer hydrogels are the subject of intensive research in the bioengineering field because of their use in bioelectronic devices and for the fabrication of electro-responsive tissues and drug delivery systems. In this study, we report the synthesis of conductive composite hydrogels consisting of a poly(N-isopropylacrylamide) (PNIPAM) matrix embedding carboxyl-functionalized multi-walled carbon nanotubes (MWCNT-COOH) using a two-step photopolymerization method. Thermo-responsive hydrogels with controlled hydrophilicity and conductivity were prepared by varying the carbon nanotube concentration in the range 0.5–3 wt%. The thermal response of the PNIPAM-based composite hydrogels was measured by differential scanning calorimetry with both ultrapure water and PBS solution as swelling liquid. Results show that the endothermic peak associated with the temperature-induced volume phase transition (VPT) shifts to higher temperatures upon increasing the concentration of the nanotubes, indicating that more energy is required to dissociate the hydrogen bonds of the polymer/filler network. In PBS solution, the swelling ratios and the VPT temperatures of the composite hydrogels are reduced because of salt-induced screening of the oppositely charged polymer/filler assembly, and the electrical resistivity decreases by a factor of 10 with respect to the water-swollen hydrogels.