Cargando…
Leaf-Counting in Monocot Plants Using Deep Regression Models
Leaf numbers are vital in estimating the yield of crops. Traditional manual leaf-counting is tedious, costly, and an enormous job. Recent convolutional neural network-based approaches achieve promising results for rosette plants. However, there is a lack of effective solutions to tackle leaf countin...
Autores principales: | Xie, Xinyan, Ge, Yufeng, Walia, Harkamal, Yang, Jinliang, Yu, Hongfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962473/ https://www.ncbi.nlm.nih.gov/pubmed/36850487 http://dx.doi.org/10.3390/s23041890 |
Ejemplares similares
-
A Novel LiDAR-Based Instrument for High-Throughput, 3D Measurement of Morphological Traits in Maize and Sorghum
por: Thapa, Suresh, et al.
Publicado: (2018) -
The use of plant models in deep learning: an application to leaf counting in rosette plants
por: Ubbens, Jordan, et al.
Publicado: (2018) -
Utilizing random regression models for genomic prediction of a longitudinal trait derived from high‐throughput phenotyping
por: Campbell, Malachy, et al.
Publicado: (2018) -
PI-Plat: a high-resolution image-based 3D reconstruction method to estimate growth dynamics of rice inflorescence traits
por: Sandhu, Jaspreet, et al.
Publicado: (2019) -
Real-Time Plant Leaf Counting Using Deep Object Detection Networks
por: Buzzy, Michael, et al.
Publicado: (2020)