Cargando…
Fast Attention CNN for Fine-Grained Crack Segmentation
Deep learning-based computer vision algorithms, especially image segmentation, have been successfully applied to pixel-level crack detection. The prediction accuracy relies heavily on detecting the performance of fine-grained cracks and removing crack-like noise. We propose a fast encoder-decoder ne...
Autores principales: | Lee, Hyunnam, Yoo, Juhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962498/ https://www.ncbi.nlm.nih.gov/pubmed/36850841 http://dx.doi.org/10.3390/s23042244 |
Ejemplares similares
-
Comprehensive Assessment of Fine-Grained Wound Images Using a Patch-Based CNN With Context-Preserving Attention
Publicado: (2021) -
Fine-Grained Face Annotation Using Deep Multi-Task CNN
por: Celona, Luigi, et al.
Publicado: (2018) -
Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN
por: Xu, Xiangyang, et al.
Publicado: (2022) -
Contour-enhanced attention CNN for CT-based COVID-19 segmentation
por: Karthik, R., et al.
Publicado: (2022) -
Histopathological Tissue Segmentation of Lung Cancer with Bilinear CNN and Soft Attention
por: Xu, Rui, et al.
Publicado: (2022)