Cargando…
Fast Image Super-Resolution Using Particle Swarm Optimization-Based Convolutional Neural Networks
Image super-resolution based on convolutional neural networks (CNN) is a hot topic in image processing. However, image super-resolution faces significant challenges in practical applications. Improving its performance on lightweight architectures is important for real-time super-resolution. In this...
Autores principales: | Zhou, Chaowei, Xiong, Aimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962569/ https://www.ncbi.nlm.nih.gov/pubmed/36850521 http://dx.doi.org/10.3390/s23041923 |
Ejemplares similares
-
Bearing fault diagnosis based on particle swarm optimization fusion convolutional neural network
por: Liu, Xian, et al.
Publicado: (2022) -
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network
por: Du, Xiaofeng, et al.
Publicado: (2018) -
Super-resolution recurrent convolutional neural networks for learning with multi-resolution whole slide images
por: Mukherjee, Lopamudra, et al.
Publicado: (2019) -
Single-Image Super-Resolution
Improvement of X-ray
Single-Particle Diffraction Images Using a Convolutional Neural Network
por: Tokuhisa, Atsushi, et al.
Publicado: (2022) -
Super-Resolution Ultrasound Imaging Scheme Based on a Symmetric Series Convolutional Neural Network
por: Tamang, Lakpa Dorje, et al.
Publicado: (2022)