Cargando…
Safety Helmet Detection Based on YOLOv5 Driven by Super-Resolution Reconstruction
High-resolution image transmission is required in safety helmet detection problems in the construction industry, which makes it difficult for existing image detection methods to achieve high-speed detection. To overcome this problem, a novel super-resolution (SR) reconstruction module is designed to...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962800/ https://www.ncbi.nlm.nih.gov/pubmed/36850419 http://dx.doi.org/10.3390/s23041822 |
_version_ | 1784896092991651840 |
---|---|
author | Han, Ju Liu, Yicheng Li, Zhipeng Liu, Yan Zhan, Bixiong |
author_facet | Han, Ju Liu, Yicheng Li, Zhipeng Liu, Yan Zhan, Bixiong |
author_sort | Han, Ju |
collection | PubMed |
description | High-resolution image transmission is required in safety helmet detection problems in the construction industry, which makes it difficult for existing image detection methods to achieve high-speed detection. To overcome this problem, a novel super-resolution (SR) reconstruction module is designed to improve the resolution of images before the detection module. In the super-resolution reconstruction module, the multichannel attention mechanism module is used to improve the breadth of feature capture. Furthermore, a novel CSP (Cross Stage Partial) module of YOLO (You Only Look Once) v5 is presented to reduce information loss and gradient confusion. Experiments are performed to validate the proposed algorithm. The PSNR (peak signal-to-noise ratio) of the proposed module is 29.420, and the SSIM (structural similarity) reaches 0.855. These results show that the proposed model works well for safety helmet detection in construction industries. |
format | Online Article Text |
id | pubmed-9962800 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99628002023-02-26 Safety Helmet Detection Based on YOLOv5 Driven by Super-Resolution Reconstruction Han, Ju Liu, Yicheng Li, Zhipeng Liu, Yan Zhan, Bixiong Sensors (Basel) Article High-resolution image transmission is required in safety helmet detection problems in the construction industry, which makes it difficult for existing image detection methods to achieve high-speed detection. To overcome this problem, a novel super-resolution (SR) reconstruction module is designed to improve the resolution of images before the detection module. In the super-resolution reconstruction module, the multichannel attention mechanism module is used to improve the breadth of feature capture. Furthermore, a novel CSP (Cross Stage Partial) module of YOLO (You Only Look Once) v5 is presented to reduce information loss and gradient confusion. Experiments are performed to validate the proposed algorithm. The PSNR (peak signal-to-noise ratio) of the proposed module is 29.420, and the SSIM (structural similarity) reaches 0.855. These results show that the proposed model works well for safety helmet detection in construction industries. MDPI 2023-02-06 /pmc/articles/PMC9962800/ /pubmed/36850419 http://dx.doi.org/10.3390/s23041822 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Han, Ju Liu, Yicheng Li, Zhipeng Liu, Yan Zhan, Bixiong Safety Helmet Detection Based on YOLOv5 Driven by Super-Resolution Reconstruction |
title | Safety Helmet Detection Based on YOLOv5 Driven by Super-Resolution Reconstruction |
title_full | Safety Helmet Detection Based on YOLOv5 Driven by Super-Resolution Reconstruction |
title_fullStr | Safety Helmet Detection Based on YOLOv5 Driven by Super-Resolution Reconstruction |
title_full_unstemmed | Safety Helmet Detection Based on YOLOv5 Driven by Super-Resolution Reconstruction |
title_short | Safety Helmet Detection Based on YOLOv5 Driven by Super-Resolution Reconstruction |
title_sort | safety helmet detection based on yolov5 driven by super-resolution reconstruction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962800/ https://www.ncbi.nlm.nih.gov/pubmed/36850419 http://dx.doi.org/10.3390/s23041822 |
work_keys_str_mv | AT hanju safetyhelmetdetectionbasedonyolov5drivenbysuperresolutionreconstruction AT liuyicheng safetyhelmetdetectionbasedonyolov5drivenbysuperresolutionreconstruction AT lizhipeng safetyhelmetdetectionbasedonyolov5drivenbysuperresolutionreconstruction AT liuyan safetyhelmetdetectionbasedonyolov5drivenbysuperresolutionreconstruction AT zhanbixiong safetyhelmetdetectionbasedonyolov5drivenbysuperresolutionreconstruction |