Cargando…
Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice
With the extension of the human life span and the increasing pressure of women’s work and life, menopause syndrome (MPS) refers to a problem that puzzles almost all women worldwide. Hormone replacement treatment (HRT) can effectively mitigate the symptoms but can also exert adverse effects to a cert...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962818/ https://www.ncbi.nlm.nih.gov/pubmed/36838814 http://dx.doi.org/10.3390/molecules28041830 |
_version_ | 1784896097373650944 |
---|---|
author | Zhang, Ying Chen, Yumin Bai, Xue Cheng, Guoliang Cao, Tianyou Dong, Liyang Zhao, Jie Zhang, Yue Qu, Huihua Kong, Hui Zhao, Yan |
author_facet | Zhang, Ying Chen, Yumin Bai, Xue Cheng, Guoliang Cao, Tianyou Dong, Liyang Zhao, Jie Zhang, Yue Qu, Huihua Kong, Hui Zhao, Yan |
author_sort | Zhang, Ying |
collection | PubMed |
description | With the extension of the human life span and the increasing pressure of women’s work and life, menopause syndrome (MPS) refers to a problem that puzzles almost all women worldwide. Hormone replacement treatment (HRT) can effectively mitigate the symptoms but can also exert adverse effects to a certain extent. Glycyrrhizae radix et rhizome (GRR) is commonly made into a charcoal processed product, termed GRR Carbonisatas (GRRC), for use in traditional Chinese medicine (TCM). GRRC is widely used to treat MPS and other gynecological diseases. In this study, GRRC was prepared through pyrolysis. Subsequently, GRR-derived carbon dots (GRR-CDs) were purified through dialysis and characterized using transmission electron microscopy, high-resolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron microscopy, and high-performance liquid chromatography. The effects of GRR-CDs on MPS were examined and confirmed using ovariectomized female mice models. The GRR-CDs ranged from 1.0 to 3.0 nm in diameter and with multiple surface chemical groups, as indicated by the results. GRR-CDs can elevate the estradiol (E2) level of healthy female mice. Moreover, GRR-CDs can alleviate MPS using the typical ovariectomized mice model, as confirmed by elevating the estradiol (E2) level and reducing the degree of follicle stimulating hormone (FSH) and luteinizing hormone (LH) and raising the degree of uterine atrophy. The results of this study suggested that GRR-CDs may be a potential clinical candidate for the treatment of MPS, which also provides a possibility for nanodrugs to treat hormonal diseases. |
format | Online Article Text |
id | pubmed-9962818 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99628182023-02-26 Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice Zhang, Ying Chen, Yumin Bai, Xue Cheng, Guoliang Cao, Tianyou Dong, Liyang Zhao, Jie Zhang, Yue Qu, Huihua Kong, Hui Zhao, Yan Molecules Article With the extension of the human life span and the increasing pressure of women’s work and life, menopause syndrome (MPS) refers to a problem that puzzles almost all women worldwide. Hormone replacement treatment (HRT) can effectively mitigate the symptoms but can also exert adverse effects to a certain extent. Glycyrrhizae radix et rhizome (GRR) is commonly made into a charcoal processed product, termed GRR Carbonisatas (GRRC), for use in traditional Chinese medicine (TCM). GRRC is widely used to treat MPS and other gynecological diseases. In this study, GRRC was prepared through pyrolysis. Subsequently, GRR-derived carbon dots (GRR-CDs) were purified through dialysis and characterized using transmission electron microscopy, high-resolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron microscopy, and high-performance liquid chromatography. The effects of GRR-CDs on MPS were examined and confirmed using ovariectomized female mice models. The GRR-CDs ranged from 1.0 to 3.0 nm in diameter and with multiple surface chemical groups, as indicated by the results. GRR-CDs can elevate the estradiol (E2) level of healthy female mice. Moreover, GRR-CDs can alleviate MPS using the typical ovariectomized mice model, as confirmed by elevating the estradiol (E2) level and reducing the degree of follicle stimulating hormone (FSH) and luteinizing hormone (LH) and raising the degree of uterine atrophy. The results of this study suggested that GRR-CDs may be a potential clinical candidate for the treatment of MPS, which also provides a possibility for nanodrugs to treat hormonal diseases. MDPI 2023-02-15 /pmc/articles/PMC9962818/ /pubmed/36838814 http://dx.doi.org/10.3390/molecules28041830 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Ying Chen, Yumin Bai, Xue Cheng, Guoliang Cao, Tianyou Dong, Liyang Zhao, Jie Zhang, Yue Qu, Huihua Kong, Hui Zhao, Yan Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice |
title | Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice |
title_full | Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice |
title_fullStr | Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice |
title_full_unstemmed | Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice |
title_short | Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice |
title_sort | glycyrrhizae radix et rhizoma-derived carbon dots and their effect on menopause syndrome in ovariectomized mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962818/ https://www.ncbi.nlm.nih.gov/pubmed/36838814 http://dx.doi.org/10.3390/molecules28041830 |
work_keys_str_mv | AT zhangying glycyrrhizaeradixetrhizomaderivedcarbondotsandtheireffectonmenopausesyndromeinovariectomizedmice AT chenyumin glycyrrhizaeradixetrhizomaderivedcarbondotsandtheireffectonmenopausesyndromeinovariectomizedmice AT baixue glycyrrhizaeradixetrhizomaderivedcarbondotsandtheireffectonmenopausesyndromeinovariectomizedmice AT chengguoliang glycyrrhizaeradixetrhizomaderivedcarbondotsandtheireffectonmenopausesyndromeinovariectomizedmice AT caotianyou glycyrrhizaeradixetrhizomaderivedcarbondotsandtheireffectonmenopausesyndromeinovariectomizedmice AT dongliyang glycyrrhizaeradixetrhizomaderivedcarbondotsandtheireffectonmenopausesyndromeinovariectomizedmice AT zhaojie glycyrrhizaeradixetrhizomaderivedcarbondotsandtheireffectonmenopausesyndromeinovariectomizedmice AT zhangyue glycyrrhizaeradixetrhizomaderivedcarbondotsandtheireffectonmenopausesyndromeinovariectomizedmice AT quhuihua glycyrrhizaeradixetrhizomaderivedcarbondotsandtheireffectonmenopausesyndromeinovariectomizedmice AT konghui glycyrrhizaeradixetrhizomaderivedcarbondotsandtheireffectonmenopausesyndromeinovariectomizedmice AT zhaoyan glycyrrhizaeradixetrhizomaderivedcarbondotsandtheireffectonmenopausesyndromeinovariectomizedmice |