Cargando…
In Situ Sea Cucumber Detection across Multiple Underwater Scenes Based on Convolutional Neural Networks and Image Enhancements
Recently, rapidly developing artificial intelligence and computer vision techniques have provided technical solutions to promote production efficiency and reduce labor costs in aquaculture and marine resource surveys. Traditional manual surveys are being replaced by advanced intelligent technologies...
Autores principales: | Wang, Yi, Fu, Boya, Fu, Longwen, Xia, Chunlei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962839/ https://www.ncbi.nlm.nih.gov/pubmed/36850633 http://dx.doi.org/10.3390/s23042037 |
Ejemplares similares
-
Depth in convolutional neural networks solves scene segmentation
por: Seijdel, Noor, et al.
Publicado: (2020) -
Research on Underwater Complex Scene SLAM Algorithm Based on Image Enhancement
por: Wu, Renhan, et al.
Publicado: (2022) -
Underwater hyperspectral imaging as an in situ taxonomic tool for deep-sea megafauna
por: Dumke, Ines, et al.
Publicado: (2018) -
A Cost-Effective In Situ Zooplankton Monitoring System Based on Novel Illumination Optimization
por: Du, Zhiqiang, et al.
Publicado: (2020) -
The contribution of object identity and configuration to scene representation in convolutional neural networks
por: Tang, Kevin, et al.
Publicado: (2022)