Cargando…

(1)H NMR Profiling of the Venom from Hylesia continua: Implications of Small Molecules for Lepidopterism

Lepidopterism caused by caterpillar contact is considered a public health problem around the world. The local and systemic responses of this pathology include short- and long-term inflammatory events. Although the proteolytic activity of the venoms from caterpillars is strongly associated with an in...

Descripción completa

Detalles Bibliográficos
Autores principales: Villa-Ruano, Nemesio, Becerra-Martínez, Elvia, Cunill-Flores, José María, Torres-Castillo, Jorge Ariel, Horta-Valerdi, Guillermo M., Pacheco-Hernández, Yesenia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962855/
https://www.ncbi.nlm.nih.gov/pubmed/36828416
http://dx.doi.org/10.3390/toxins15020101
Descripción
Sumario:Lepidopterism caused by caterpillar contact is considered a public health problem around the world. The local and systemic responses of this pathology include short- and long-term inflammatory events. Although the proteolytic activity of the venoms from caterpillars is strongly associated with an inflammatory response in humans and murine models, fast and acute symptoms such as a burning sensation, itching, and pain should be related to the presence of low-weight hydrophilic molecules which easily influence cell metabolism. This investigation reports on the (1)H-Nuclear Magnetic Resonance (NMR) profiling of the venom from the larva of Hylesia continua, a caterpillar linked to frequent cases of lepidopterism in the northern highlands of Puebla, Mexico. According to one-dimensional (1D) and two-dimensional (2D) NMR data, the venom of H. continua contained 19 compounds with proven pain-inducing activity (i.e., acetic acid, lactic acid, formic acid, succinic acid, 2-hydroxyglutaric acid, ethanol, and glutamate), inflammatory activity (i.e., cadaverine, putrescine, and acetoin), as well as natural immunosuppressive activity (i.e., O-phosphocholine and urocanic acid). The levels of the 19 compounds were calculated using quantitative-NMR (qNMR) and extensively discussed on the basis of their toxic properties which partially explain typical symptoms of lepidopterism caused by the larvae of H. continua. To the best of our knowledge, this is the first investigation reporting a complex mixture of small molecules with inflammatory properties dissolved in the venom of a lepidopteran larva.