Cargando…
Bias in machine learning models can be significantly mitigated by careful training: Evidence from neuroimaging studies
Despite the great promise that machine learning has offered in many fields of medicine, it has also raised concerns about potential biases and poor generalization across genders, age distributions, races and ethnicities, hospitals, and data acquisition equipment and protocols. In the current study,...
Autores principales: | Wang, Rongguang, Chaudhari, Pratik, Davatzikos, Christos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962919/ https://www.ncbi.nlm.nih.gov/pubmed/36716365 http://dx.doi.org/10.1073/pnas.2211613120 |
Ejemplares similares
-
Reply to Holm et al.: Careful training is a good practice
por: Wang, Rongguang, et al.
Publicado: (2023) -
An adversarial training framework for mitigating algorithmic biases in clinical machine learning
por: Yang, Jenny, et al.
Publicado: (2023) -
Mitigating bias in machine learning for medicine
por: Vokinger, Kerstin N., et al.
Publicado: (2021) -
Mitigating site effects in covariance for machine learning in neuroimaging data
por: Chen, Andrew A., et al.
Publicado: (2021) -
Mitigating Bias and Error in Machine Learning to Protect Sports Data
por: Zhang, Jie, et al.
Publicado: (2022)