Cargando…
Socio-ecological gap analysis to forecast species range contractions for conservation
Conservation requires both a needs assessment and prioritization scheme for planning and implementation. Range maps are critical for understanding and conserving biodiversity, but current range maps often omit content, negating important metrics of variation in populations and places. Here, we integ...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962987/ https://www.ncbi.nlm.nih.gov/pubmed/36165442 http://dx.doi.org/10.1073/pnas.2201942119 |
Sumario: | Conservation requires both a needs assessment and prioritization scheme for planning and implementation. Range maps are critical for understanding and conserving biodiversity, but current range maps often omit content, negating important metrics of variation in populations and places. Here, we integrate a myriad of conditions that are spatially explicit across distributions of carnivores to identify gaps in capacity necessary for their conservation. Expanding on traditional gap analyses that focus almost exclusively on quantifying discordance in protected area coverage across a species’ range, our work aggregates threat layers (e.g., drought, human pressures) with resources layers (e.g., protected areas, cultural diversity) to identify gaps in available conservation capacity (ACC) across ranges for 91 African carnivores. Our model indicated that all species have some portion of their range at risk of contraction, with an average of 15 percentage range loss. We found that the ACC differed based on body size and taxonomy. Results deviated from current perceptions of extinction risks for species with an International Union for Conservation of Nature (IUCN) threat status of Least Concern and yielded insights for species categorized as Data Deficient. Our socio-ecological gap analysis presents a geospatial approach to inform decision-making and resource allocation in conservation. Ultimately, our work advances forecasting dynamics of species’ ranges that are increasingly vital in an era of great socio-ecological change to mitigate human–wildlife conflict and promote inclusive carnivore conservation across geographies. |
---|