Cargando…
A Structure-Based Iterative Closest Point Using Anderson Acceleration for Point Clouds with Low Overlap
The traditional point-cloud registration algorithms require large overlap between scans, which imposes strict constrains on data acquisition. To facilitate registration, the user has to strategically position or move the scanner to ensure proper overlap. In this work, we design a method of feature e...
Autores principales: | Zeng, Chao, Chen, Xiaomei, Zhang, Yongtian, Gao, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963010/ https://www.ncbi.nlm.nih.gov/pubmed/36850645 http://dx.doi.org/10.3390/s23042049 |
Ejemplares similares
-
Iterative K-Closest Point Algorithms for Colored Point Cloud Registration
por: Choi, Ouk, et al.
Publicado: (2020) -
An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features
por: He, Ying, et al.
Publicado: (2017) -
Computational Analysis of Distance Operators for the Iterative Closest Point Algorithm
por: Mora, Higinio, et al.
Publicado: (2016) -
LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter
por: Liu, Wanli
Publicado: (2017) -
Robust iterative closest point algorithm based on global reference point for rotation invariant registration
por: Du, Shaoyi, et al.
Publicado: (2017)