Cargando…
A DOPO-Based Compound Containing Aminophenyl Silicone Oil for Reducing Fire Hazards of Polycarbonate
A novel P/N/Si-containing flame retardant (marked as DASO) was synthesized through an Atherton–Todd reaction between 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide and aminophenyl silicone oil, and further used for reducing fire hazards of polycarbonate (PC). The chemical structure of DASO was...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963052/ https://www.ncbi.nlm.nih.gov/pubmed/36837079 http://dx.doi.org/10.3390/ma16041449 |
Sumario: | A novel P/N/Si-containing flame retardant (marked as DASO) was synthesized through an Atherton–Todd reaction between 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide and aminophenyl silicone oil, and further used for reducing fire hazards of polycarbonate (PC). The chemical structure of DASO was verified via FTIR, (1)H, and (31)P NMR. Upon the incorporation of 2 wt% DASO, the FRPC composite achieved a high limiting oxygen index (LOI) of 32.2% and a desired UL-94 V-0 rating. In this case, the peak heat release rate (PHRR) and total smoke production (TSP) were reduced by 26% and 44% as compared with the pure PC, respectively. The improved fire safety contributed to the flame retardant roles of DASO in both the condensed phase and gas phase. The presence of DASO promoted the formation of dense and highly graphited char layer in the condensed phase, and released non-combustible gases and phosphorus-containing radicals in the gas phase. Furthermore, the FRPC composites displayed comparable elongation at break but a slightly reduced tensile and impact strength. |
---|