Cargando…
Comprehensive refractive manipulation of water waves using electrostriction
The control of wave propagation based on refraction principles offers unparalleled possibilities as shown by the striking example of optics. This approach is unfortunately limited for water waves as it relies mainly on variations of the liquid depth which, while controlling the wave velocity, also t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963076/ https://www.ncbi.nlm.nih.gov/pubmed/36716380 http://dx.doi.org/10.1073/pnas.2216828120 |
_version_ | 1784896161646116864 |
---|---|
author | Mouet, Valentin Apffel, Benjamin Fort, Emmanuel |
author_facet | Mouet, Valentin Apffel, Benjamin Fort, Emmanuel |
author_sort | Mouet, Valentin |
collection | PubMed |
description | The control of wave propagation based on refraction principles offers unparalleled possibilities as shown by the striking example of optics. This approach is unfortunately limited for water waves as it relies mainly on variations of the liquid depth which, while controlling the wave velocity, also trigger nonlinearities and damping. In this article, we show experimentally that electrostriction allows to implement extensive refraction-based control of water waves in a precise and contactless manner. The setup consists of an electrode under high voltage placed above the grounded conductive water. The waves propagating under the electrode can be slowed down up to approximately half their speed compared to free propagation. We characterize the Snell–Descartes laws of refraction and the total internal reflection for the water waves. We implement emblematic refraction-based devices such as electrically tunable focusing lenses, waveguides without obstacles, and beam splitters based on frustrated internal reflection to perform interference experiments. |
format | Online Article Text |
id | pubmed-9963076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-99630762023-07-30 Comprehensive refractive manipulation of water waves using electrostriction Mouet, Valentin Apffel, Benjamin Fort, Emmanuel Proc Natl Acad Sci U S A Physical Sciences The control of wave propagation based on refraction principles offers unparalleled possibilities as shown by the striking example of optics. This approach is unfortunately limited for water waves as it relies mainly on variations of the liquid depth which, while controlling the wave velocity, also trigger nonlinearities and damping. In this article, we show experimentally that electrostriction allows to implement extensive refraction-based control of water waves in a precise and contactless manner. The setup consists of an electrode under high voltage placed above the grounded conductive water. The waves propagating under the electrode can be slowed down up to approximately half their speed compared to free propagation. We characterize the Snell–Descartes laws of refraction and the total internal reflection for the water waves. We implement emblematic refraction-based devices such as electrically tunable focusing lenses, waveguides without obstacles, and beam splitters based on frustrated internal reflection to perform interference experiments. National Academy of Sciences 2023-01-30 2023-02-07 /pmc/articles/PMC9963076/ /pubmed/36716380 http://dx.doi.org/10.1073/pnas.2216828120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Mouet, Valentin Apffel, Benjamin Fort, Emmanuel Comprehensive refractive manipulation of water waves using electrostriction |
title | Comprehensive refractive manipulation of water waves using electrostriction |
title_full | Comprehensive refractive manipulation of water waves using electrostriction |
title_fullStr | Comprehensive refractive manipulation of water waves using electrostriction |
title_full_unstemmed | Comprehensive refractive manipulation of water waves using electrostriction |
title_short | Comprehensive refractive manipulation of water waves using electrostriction |
title_sort | comprehensive refractive manipulation of water waves using electrostriction |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963076/ https://www.ncbi.nlm.nih.gov/pubmed/36716380 http://dx.doi.org/10.1073/pnas.2216828120 |
work_keys_str_mv | AT mouetvalentin comprehensiverefractivemanipulationofwaterwavesusingelectrostriction AT apffelbenjamin comprehensiverefractivemanipulationofwaterwavesusingelectrostriction AT fortemmanuel comprehensiverefractivemanipulationofwaterwavesusingelectrostriction |