Cargando…

A Deep Learning Architecture Using 3D Vectorcardiogram to Detect R-Peaks in ECG with Enhanced Precision

Providing reliable detection of QRS complexes is key in automated analyses of electrocardiograms (ECG). Accurate and timely R-peak detections provide a basis for ECG-based diagnoses and to synchronize radiologic, electrophysiologic, or other medical devices. Compared with classical algorithms, deep...

Descripción completa

Detalles Bibliográficos
Autores principales: Mehri, Maroua, Calmon, Guillaume, Odille, Freddy, Oster, Julien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963088/
https://www.ncbi.nlm.nih.gov/pubmed/36850889
http://dx.doi.org/10.3390/s23042288
Descripción
Sumario:Providing reliable detection of QRS complexes is key in automated analyses of electrocardiograms (ECG). Accurate and timely R-peak detections provide a basis for ECG-based diagnoses and to synchronize radiologic, electrophysiologic, or other medical devices. Compared with classical algorithms, deep learning (DL) architectures have demonstrated superior accuracy and high generalization capacity. Furthermore, they can be embedded on edge devices for real-time inference. 3D vectorcardiograms (VCG) provide a unifying framework for detecting R-peaks regardless of the acquisition strategy or number of ECG leads. In this article, a DL architecture was demonstrated to provide enhanced precision when trained and applied on 3D VCG, with no pre-processing nor post-processing steps. Experiments were conducted on four different public databases. Using the proposed approach, high F1-scores of 99.80% and 99.64% were achieved in leave-one-out cross-validation and cross-database validation protocols, respectively. False detections, measured by a precision of 99.88% or more, were significantly reduced compared with recent state-of-the-art methods tested on the same databases, without penalty in the number of missed peaks, measured by a recall of 99.39% or more. This approach can provide new applications for devices where precision, or positive predictive value, is essential, for instance cardiac magnetic resonance imaging.