Cargando…
Automated Capture of Intraoperative Adverse Events Using Artificial Intelligence: A Systematic Review and Meta-Analysis
Intraoperative adverse events (iAEs) impact the outcomes of surgery, and yet are not routinely collected, graded, and reported. Advancements in artificial intelligence (AI) have the potential to power real-time, automatic detection of these events and disrupt the landscape of surgical safety through...
Autores principales: | Eppler, Michael B., Sayegh, Aref S., Maas, Marissa, Venkat, Abhishek, Hemal, Sij, Desai, Mihir M., Hung, Andrew J., Grantcharov, Teodor, Cacciamani, Giovanni E., Goldenberg, Mitchell G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963108/ https://www.ncbi.nlm.nih.gov/pubmed/36836223 http://dx.doi.org/10.3390/jcm12041687 |
Ejemplares similares
-
If You Know Them, You Avoid Them: The Imperative Need to Improve the Narrative Regarding Perioperative Adverse Events
por: Eppler, Michael, et al.
Publicado: (2022) -
Strategies for Improving the Standardization of Perioperative Adverse Events in Surgery and Anesthesiology: “The Long Road from Assessment to Collection, Grading and Reporting”
por: Sayegh, Aref S., et al.
Publicado: (2022) -
Recommendations for Intraoperative Adverse Events Data Collection in Clinical Studies and Study Protocols. An ICARUS Global Surgical Collaboration Study
por: Cacciamani, Giovanni E., et al.
Publicado: (2023) -
Design and validation of an inertial measurement unit (IMU)-based sensor for capturing camera movement in the operating room
por: Saun, Tomas J., et al.
Publicado: (2021) -
A Protocol for the Development of the Intraoperative Complications Assessment and Reporting With Universal Standards Criteria: The ICARUS Project
por: Cacciamani, Giovanni, et al.
Publicado: (2021)