Cargando…
Utilization of Mechanically Recycled Carbon Fibers in Vinyl Ester Composites
As we enter the twenty-first century, the aviation sector is expected to thrive as flying becomes the primary mode of transportation between states or nations. With such a demand, there is a corresponding need to manufacture aircraft components. The study focused on recycling carbon fiber composites...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963126/ https://www.ncbi.nlm.nih.gov/pubmed/36850299 http://dx.doi.org/10.3390/polym15041016 |
Sumario: | As we enter the twenty-first century, the aviation sector is expected to thrive as flying becomes the primary mode of transportation between states or nations. With such a demand, there is a corresponding need to manufacture aircraft components. The study focused on recycling carbon fiber composites received from the STRATA company, which were cut-off/waste material generated during the manufacture of airplane components. The cut-offs were then reduced to powder form using a standard face milling machine in three sizes (90, 150, and 250 µm). After, the powder was utilized to fabricate vinyl ester composites with four weight percentages (10%, 20%, 30%, and 40%). The results demonstrate that the tensile strength of all composites had risen by 30.2%, 21.3%, and 17.6% for 90, 150, and 250 µm respective with the addition of 20 wt% of reinforcement. Furthermore, subsequently decreased with the additional reinforcement for all particle sizes. The compressive strength increased by 30% from 187.5 MPa to 244 MPa with 10 wt% of recycled carbon powder composite of 90μm particle size. However, samples prepared with 150 μm and 250 μm fiber size show approximately 17% and 1% increase in the compression strength with the addition of 10wt% of recycled carbon powder. A similar trend was observed for the flexural strength with an highest increase of 9% for 90 µm particle size with addition of 20 wt% reinforcement. Nonetheless, the SEM images revealed that the fiber–matrix bonding was weak, proved through the clean pullout fibers at the fracture surfaces. |
---|