Cargando…

Understanding the Role of Ureteral Access Sheath in Preventing Post-Operative Infectious Complications in Stone Patients Treated with Ureteroscopy and Ho:YAG Laser Lithotripsy: Results from a Tertiary Care Referral Center

Introduction and objectives: The use of ureteral access sheaths (UAS) limits the irrigation-induced increase in intrarenal pressure during ureteroscopy (URS). We investigated the relationship between UAS and rates of postoperative infectious complications in stone patients treated with URS. Material...

Descripción completa

Detalles Bibliográficos
Autores principales: Villa, Luca, Dioni, Pietro, Candela, Luigi, Ventimiglia, Eugenio, De Angelis, Mario, Corsini, Christian, Robesti, Daniele, Fantin, Margherita, D’Arma, Alessia, Proietti, Silvia, Giusti, Guido, Kartalas Goumas, Ioannis, Briganti, Alberto, Montorsi, Francesco, Salonia, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963298/
https://www.ncbi.nlm.nih.gov/pubmed/36835992
http://dx.doi.org/10.3390/jcm12041457
Descripción
Sumario:Introduction and objectives: The use of ureteral access sheaths (UAS) limits the irrigation-induced increase in intrarenal pressure during ureteroscopy (URS). We investigated the relationship between UAS and rates of postoperative infectious complications in stone patients treated with URS. Materials and methods: Data from 369 stone patients treated with URS from September 2016 to December 2021 at a single institution were analyzed. UAS (10/12 Fr) placement was attempted in case of intrarenal surgery. The chi-square test was used to assess the relationship between the use of UAS and fever, sepsis, and septic shock. Univariable and multivariable logistic regression analyses tested the association of patients’ characteristics and operative data and the rate of postoperative infectious complications. Results: Full data collection of 451 URS procedures was available. Overall, UAS was used in 220 (48.8%) procedures. As for postoperative infectious sequalae, we recorded fever (n = 52; 11.5%), sepsis (n = 10; 2.2%), and septic shock (n = 6; 1.3%). Of those, UAS was not used in 29 (55.8%), 7 (70%), and 5 (83.3%) cases, respectively (all p > 0.05). At multivariable logistic regression analysis, performing URS without UAS was not associated with the risk of having fever and sepsis, but it increased the risk of septic shock (OR = 14.6; 95% CI = 1.08–197.1). Moreover, age-adjusted CCI score (for fever-OR = 1.23; 95% CI = 1.07–1.42, sepsis-OR = 1.47; 95% CI = 1.09–1.99, and septic shock-OR = 1.61; 95% CI = 1.08–2.42, respectively), history of fever secondary to stones (for fever-OR = 2.23; 95% CI = 1.02–4.90) and preoperative positive urine culture (for sepsis-OR = 4.87; 95% CI = 1.12–21.25) did emerge as further associated risk factors. Conclusions: The use of UAS emerged to prevent the onset of septic shock in patients treated with URS, with no clear benefit in terms of fever and sepsis. Further studies may help clarify whether the reduction in fluid reabsorption load mediated by UAS is protective against life-threatening conditions in case of infectious complications. The patients’ baseline characteristics remain the main predictors of infectious sequelae in a clinical setting.