Cargando…
Effect of APS Spraying Parameters on the Microstructure Formation of Fe(3)Al Intermetallics Coatings Using Mechanochemically Synthesized Nanocrystalline Fe-Al Powders
The present paper presents a study of the behaviour of Fe(3)Al intermetallic powders particles based on 86Fe-14Al, 86Fe-14(Fe5Mg), and 60.8Fe-39.2(Ti37.5Al) compositions obtained by mechanochemical synthesis at successive stages of the plasma spraying process: during transfer in the volume of the ga...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963353/ https://www.ncbi.nlm.nih.gov/pubmed/36837298 http://dx.doi.org/10.3390/ma16041669 |
_version_ | 1784896232383053824 |
---|---|
author | Senderowski, Cezary Vigilianska, Nataliia Burlachenko, Oleksii Grishchenko, Oleksandr Murashov, Anatolii Stepanyuk, Sergiy |
author_facet | Senderowski, Cezary Vigilianska, Nataliia Burlachenko, Oleksii Grishchenko, Oleksandr Murashov, Anatolii Stepanyuk, Sergiy |
author_sort | Senderowski, Cezary |
collection | PubMed |
description | The present paper presents a study of the behaviour of Fe(3)Al intermetallic powders particles based on 86Fe-14Al, 86Fe-14(Fe5Mg), and 60.8Fe-39.2(Ti37.5Al) compositions obtained by mechanochemical synthesis at successive stages of the plasma spraying process: during transfer in the volume of the gas stream and deformation at the moment of impact on the substrate. The effect of the change in current on the size of powder particles during their transfer through the high-temperature stream and the degree of particle deformation upon impact with the substrate was determined. It was found that during transfer through the plasma jet, there was an increase in the average size of sputtering products by two–three times compared to the initial effects of mechanochemical synthesis due to the coagulation of some particles. In this case, an increase in current from 400 to 500 A led to a growth in average particle size by 14–47% due to the partial evaporation of fine particles with an increase in their heating degree. An increase in current also led to a 5–10% growth in particle deformation degree upon impact on the substrate due to the rising temperature and velocity of the plasma jet. Based on the research, the parameters of plasma spraying of mechanically synthesized Fe(3)Al intermetallic-based powders were determined, at which dense coatings with a thin-lamellar structure were formed. |
format | Online Article Text |
id | pubmed-9963353 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99633532023-02-26 Effect of APS Spraying Parameters on the Microstructure Formation of Fe(3)Al Intermetallics Coatings Using Mechanochemically Synthesized Nanocrystalline Fe-Al Powders Senderowski, Cezary Vigilianska, Nataliia Burlachenko, Oleksii Grishchenko, Oleksandr Murashov, Anatolii Stepanyuk, Sergiy Materials (Basel) Article The present paper presents a study of the behaviour of Fe(3)Al intermetallic powders particles based on 86Fe-14Al, 86Fe-14(Fe5Mg), and 60.8Fe-39.2(Ti37.5Al) compositions obtained by mechanochemical synthesis at successive stages of the plasma spraying process: during transfer in the volume of the gas stream and deformation at the moment of impact on the substrate. The effect of the change in current on the size of powder particles during their transfer through the high-temperature stream and the degree of particle deformation upon impact with the substrate was determined. It was found that during transfer through the plasma jet, there was an increase in the average size of sputtering products by two–three times compared to the initial effects of mechanochemical synthesis due to the coagulation of some particles. In this case, an increase in current from 400 to 500 A led to a growth in average particle size by 14–47% due to the partial evaporation of fine particles with an increase in their heating degree. An increase in current also led to a 5–10% growth in particle deformation degree upon impact on the substrate due to the rising temperature and velocity of the plasma jet. Based on the research, the parameters of plasma spraying of mechanically synthesized Fe(3)Al intermetallic-based powders were determined, at which dense coatings with a thin-lamellar structure were formed. MDPI 2023-02-16 /pmc/articles/PMC9963353/ /pubmed/36837298 http://dx.doi.org/10.3390/ma16041669 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Senderowski, Cezary Vigilianska, Nataliia Burlachenko, Oleksii Grishchenko, Oleksandr Murashov, Anatolii Stepanyuk, Sergiy Effect of APS Spraying Parameters on the Microstructure Formation of Fe(3)Al Intermetallics Coatings Using Mechanochemically Synthesized Nanocrystalline Fe-Al Powders |
title | Effect of APS Spraying Parameters on the Microstructure Formation of Fe(3)Al Intermetallics Coatings Using Mechanochemically Synthesized Nanocrystalline Fe-Al Powders |
title_full | Effect of APS Spraying Parameters on the Microstructure Formation of Fe(3)Al Intermetallics Coatings Using Mechanochemically Synthesized Nanocrystalline Fe-Al Powders |
title_fullStr | Effect of APS Spraying Parameters on the Microstructure Formation of Fe(3)Al Intermetallics Coatings Using Mechanochemically Synthesized Nanocrystalline Fe-Al Powders |
title_full_unstemmed | Effect of APS Spraying Parameters on the Microstructure Formation of Fe(3)Al Intermetallics Coatings Using Mechanochemically Synthesized Nanocrystalline Fe-Al Powders |
title_short | Effect of APS Spraying Parameters on the Microstructure Formation of Fe(3)Al Intermetallics Coatings Using Mechanochemically Synthesized Nanocrystalline Fe-Al Powders |
title_sort | effect of aps spraying parameters on the microstructure formation of fe(3)al intermetallics coatings using mechanochemically synthesized nanocrystalline fe-al powders |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963353/ https://www.ncbi.nlm.nih.gov/pubmed/36837298 http://dx.doi.org/10.3390/ma16041669 |
work_keys_str_mv | AT senderowskicezary effectofapssprayingparametersonthemicrostructureformationoffe3alintermetallicscoatingsusingmechanochemicallysynthesizednanocrystallinefealpowders AT vigilianskanataliia effectofapssprayingparametersonthemicrostructureformationoffe3alintermetallicscoatingsusingmechanochemicallysynthesizednanocrystallinefealpowders AT burlachenkooleksii effectofapssprayingparametersonthemicrostructureformationoffe3alintermetallicscoatingsusingmechanochemicallysynthesizednanocrystallinefealpowders AT grishchenkooleksandr effectofapssprayingparametersonthemicrostructureformationoffe3alintermetallicscoatingsusingmechanochemicallysynthesizednanocrystallinefealpowders AT murashovanatolii effectofapssprayingparametersonthemicrostructureformationoffe3alintermetallicscoatingsusingmechanochemicallysynthesizednanocrystallinefealpowders AT stepanyuksergiy effectofapssprayingparametersonthemicrostructureformationoffe3alintermetallicscoatingsusingmechanochemicallysynthesizednanocrystallinefealpowders |