Cargando…
Interfacial-Water-Modulated Photoluminescence of Single-Layer WS(2) on Mica
Because of their bandgap tunability and strong light–matter interactions, two-dimensional (2D) semiconductors are considered promising candidates for next-generation optoelectronic devices. However, their photophysical properties are greatly affected by their surrounding environment because of their...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963566/ https://www.ncbi.nlm.nih.gov/pubmed/36834902 http://dx.doi.org/10.3390/ijms24043492 |
_version_ | 1784896283828289536 |
---|---|
author | Kim, Yanghee Kang, Haneul Song, Myeongin Kwon, Hyuksang Ryu, Sunmin |
author_facet | Kim, Yanghee Kang, Haneul Song, Myeongin Kwon, Hyuksang Ryu, Sunmin |
author_sort | Kim, Yanghee |
collection | PubMed |
description | Because of their bandgap tunability and strong light–matter interactions, two-dimensional (2D) semiconductors are considered promising candidates for next-generation optoelectronic devices. However, their photophysical properties are greatly affected by their surrounding environment because of their 2D nature. In this work, we report that the photoluminescence (PL) of single-layer WS(2) is substantially affected by interfacial water that is inevitably present between it and the supporting mica substrates. Using PL spectroscopy and wide-field imaging, we show that the emission signals from A excitons and their negative trions decreased at distinctively different rates with increasing excitation power, which could be attributed to the more efficient annihilation between excitons than between trions. By gas-controlled PL imaging, we also prove that the interfacial water converted the trions into excitons by depleting native negative charges through an oxygen reduction reaction, which rendered the excited WS(2) more susceptible to nonradiative decay via exciton–exciton annihilation. Understanding the role of nanoscopic water in complex low-dimensional materials will eventually contribute to devising their novel functions and related devices. |
format | Online Article Text |
id | pubmed-9963566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99635662023-02-26 Interfacial-Water-Modulated Photoluminescence of Single-Layer WS(2) on Mica Kim, Yanghee Kang, Haneul Song, Myeongin Kwon, Hyuksang Ryu, Sunmin Int J Mol Sci Article Because of their bandgap tunability and strong light–matter interactions, two-dimensional (2D) semiconductors are considered promising candidates for next-generation optoelectronic devices. However, their photophysical properties are greatly affected by their surrounding environment because of their 2D nature. In this work, we report that the photoluminescence (PL) of single-layer WS(2) is substantially affected by interfacial water that is inevitably present between it and the supporting mica substrates. Using PL spectroscopy and wide-field imaging, we show that the emission signals from A excitons and their negative trions decreased at distinctively different rates with increasing excitation power, which could be attributed to the more efficient annihilation between excitons than between trions. By gas-controlled PL imaging, we also prove that the interfacial water converted the trions into excitons by depleting native negative charges through an oxygen reduction reaction, which rendered the excited WS(2) more susceptible to nonradiative decay via exciton–exciton annihilation. Understanding the role of nanoscopic water in complex low-dimensional materials will eventually contribute to devising their novel functions and related devices. MDPI 2023-02-09 /pmc/articles/PMC9963566/ /pubmed/36834902 http://dx.doi.org/10.3390/ijms24043492 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Yanghee Kang, Haneul Song, Myeongin Kwon, Hyuksang Ryu, Sunmin Interfacial-Water-Modulated Photoluminescence of Single-Layer WS(2) on Mica |
title | Interfacial-Water-Modulated Photoluminescence of Single-Layer WS(2) on Mica |
title_full | Interfacial-Water-Modulated Photoluminescence of Single-Layer WS(2) on Mica |
title_fullStr | Interfacial-Water-Modulated Photoluminescence of Single-Layer WS(2) on Mica |
title_full_unstemmed | Interfacial-Water-Modulated Photoluminescence of Single-Layer WS(2) on Mica |
title_short | Interfacial-Water-Modulated Photoluminescence of Single-Layer WS(2) on Mica |
title_sort | interfacial-water-modulated photoluminescence of single-layer ws(2) on mica |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963566/ https://www.ncbi.nlm.nih.gov/pubmed/36834902 http://dx.doi.org/10.3390/ijms24043492 |
work_keys_str_mv | AT kimyanghee interfacialwatermodulatedphotoluminescenceofsinglelayerws2onmica AT kanghaneul interfacialwatermodulatedphotoluminescenceofsinglelayerws2onmica AT songmyeongin interfacialwatermodulatedphotoluminescenceofsinglelayerws2onmica AT kwonhyuksang interfacialwatermodulatedphotoluminescenceofsinglelayerws2onmica AT ryusunmin interfacialwatermodulatedphotoluminescenceofsinglelayerws2onmica |