Cargando…
Assessment of Various Multimodal Fusion Approaches Using Synthetic Aperture Radar (SAR) and Electro-Optical (EO) Imagery for Vehicle Classification via Neural Networks †
Multimodal fusion approaches that combine data from dissimilar sensors can better exploit human-like reasoning and strategies for situational awareness. The performance of a six-layer convolutional neural network (CNN) and an 18-layer ResNet architecture are compared for a variety of fusion methods...
Autores principales: | Narayanan, Ram M., Wood, Noah S., Lewis, Benjamin P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963728/ https://www.ncbi.nlm.nih.gov/pubmed/36850805 http://dx.doi.org/10.3390/s23042207 |
Ejemplares similares
-
Synthetic aperture radar polarimetry
por: Van Zyl, Jakob, et al.
Publicado: (2011) -
Imaging with Synthetic Aperture Radar
por: Massonnet, Didier, et al.
Publicado: (2008) -
Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery
por: Nemni, Edoardo, et al.
Publicado: (2020) -
Target Classification in Synthetic Aperture Radar Images Using Quantized Wavelet Scattering Networks †
por: Raj, Raghu G., et al.
Publicado: (2021) -
Design technology of synthetic aperture radar
por: Lu, Jiaguo
Publicado: (2019)