Cargando…

Multidimensional visualization of the dynamic evolution of Li metal via in situ/operando methods

The growing demands for high-energy density electrical energy storage devices stimulate the coupling of conversion-type cathodes and lithium (Li) metal anodes. While promising, the use of these “Li-free” cathodes brings new challenges to the Li anode interface, as Li needs to be dissolved first duri...

Descripción completa

Detalles Bibliográficos
Autores principales: Lang, Shuangyan, Colletta, Michael, Krumov, Mihail R., Seok, Jeesoo, Kourkoutis, Lena F., Wen, Rui, Abruña, Héctor D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963773/
https://www.ncbi.nlm.nih.gov/pubmed/36749718
http://dx.doi.org/10.1073/pnas.2220419120
_version_ 1784896337209196544
author Lang, Shuangyan
Colletta, Michael
Krumov, Mihail R.
Seok, Jeesoo
Kourkoutis, Lena F.
Wen, Rui
Abruña, Héctor D.
author_facet Lang, Shuangyan
Colletta, Michael
Krumov, Mihail R.
Seok, Jeesoo
Kourkoutis, Lena F.
Wen, Rui
Abruña, Héctor D.
author_sort Lang, Shuangyan
collection PubMed
description The growing demands for high-energy density electrical energy storage devices stimulate the coupling of conversion-type cathodes and lithium (Li) metal anodes. While promising, the use of these “Li-free” cathodes brings new challenges to the Li anode interface, as Li needs to be dissolved first during cell operation. In this study, we have achieved a direct visualization and comprehensive analysis of the dynamic evolution of the Li interface. The critical metrics of the interfacial resistance, Li growth, and solid electrolyte interface (SEI) distribution during the initial dissolution/deposition processes were systematically investigated by employing multidimensional analysis methods. They include three-electrode impedance tests, in situ atomic force microscopy, scanning electrochemical microscopy, and cryogenic scanning transmission electron microscopy. The high-resolution imaging and real-time observations show that a loose, diffuse, and unevenly distributed SEI is formed during the initial dissolution process. This leads to the dramatically fast growth of Li during the subsequent deposition, deviating from Fick’s law, which exacerbates the interfacial impedance. The compactness of the interfacial structure and enrichment of electrolyte species at the surface during the initial deposition play critical roles in the long-term stability of Li anodes, as revealed by operando confocal Raman spectroscopic mapping. Our observations relate to ion transfer, morphological and structural evolution, and Li (de)solvation at Li interfaces, revealing the underlying pathways influenced by the initial dissolution process, which promotes a reconsideration of anode investigations and effective protection strategies.
format Online
Article
Text
id pubmed-9963773
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-99637732023-08-07 Multidimensional visualization of the dynamic evolution of Li metal via in situ/operando methods Lang, Shuangyan Colletta, Michael Krumov, Mihail R. Seok, Jeesoo Kourkoutis, Lena F. Wen, Rui Abruña, Héctor D. Proc Natl Acad Sci U S A Physical Sciences The growing demands for high-energy density electrical energy storage devices stimulate the coupling of conversion-type cathodes and lithium (Li) metal anodes. While promising, the use of these “Li-free” cathodes brings new challenges to the Li anode interface, as Li needs to be dissolved first during cell operation. In this study, we have achieved a direct visualization and comprehensive analysis of the dynamic evolution of the Li interface. The critical metrics of the interfacial resistance, Li growth, and solid electrolyte interface (SEI) distribution during the initial dissolution/deposition processes were systematically investigated by employing multidimensional analysis methods. They include three-electrode impedance tests, in situ atomic force microscopy, scanning electrochemical microscopy, and cryogenic scanning transmission electron microscopy. The high-resolution imaging and real-time observations show that a loose, diffuse, and unevenly distributed SEI is formed during the initial dissolution process. This leads to the dramatically fast growth of Li during the subsequent deposition, deviating from Fick’s law, which exacerbates the interfacial impedance. The compactness of the interfacial structure and enrichment of electrolyte species at the surface during the initial deposition play critical roles in the long-term stability of Li anodes, as revealed by operando confocal Raman spectroscopic mapping. Our observations relate to ion transfer, morphological and structural evolution, and Li (de)solvation at Li interfaces, revealing the underlying pathways influenced by the initial dissolution process, which promotes a reconsideration of anode investigations and effective protection strategies. National Academy of Sciences 2023-02-07 2023-02-14 /pmc/articles/PMC9963773/ /pubmed/36749718 http://dx.doi.org/10.1073/pnas.2220419120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Lang, Shuangyan
Colletta, Michael
Krumov, Mihail R.
Seok, Jeesoo
Kourkoutis, Lena F.
Wen, Rui
Abruña, Héctor D.
Multidimensional visualization of the dynamic evolution of Li metal via in situ/operando methods
title Multidimensional visualization of the dynamic evolution of Li metal via in situ/operando methods
title_full Multidimensional visualization of the dynamic evolution of Li metal via in situ/operando methods
title_fullStr Multidimensional visualization of the dynamic evolution of Li metal via in situ/operando methods
title_full_unstemmed Multidimensional visualization of the dynamic evolution of Li metal via in situ/operando methods
title_short Multidimensional visualization of the dynamic evolution of Li metal via in situ/operando methods
title_sort multidimensional visualization of the dynamic evolution of li metal via in situ/operando methods
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963773/
https://www.ncbi.nlm.nih.gov/pubmed/36749718
http://dx.doi.org/10.1073/pnas.2220419120
work_keys_str_mv AT langshuangyan multidimensionalvisualizationofthedynamicevolutionoflimetalviainsituoperandomethods
AT collettamichael multidimensionalvisualizationofthedynamicevolutionoflimetalviainsituoperandomethods
AT krumovmihailr multidimensionalvisualizationofthedynamicevolutionoflimetalviainsituoperandomethods
AT seokjeesoo multidimensionalvisualizationofthedynamicevolutionoflimetalviainsituoperandomethods
AT kourkoutislenaf multidimensionalvisualizationofthedynamicevolutionoflimetalviainsituoperandomethods
AT wenrui multidimensionalvisualizationofthedynamicevolutionoflimetalviainsituoperandomethods
AT abrunahectord multidimensionalvisualizationofthedynamicevolutionoflimetalviainsituoperandomethods