Cargando…

Artificial Intelligence Based Analysis of Corneal Confocal Microscopy Images for Diagnosing Peripheral Neuropathy: A Binary Classification Model

Diabetic peripheral neuropathy (DPN) is the leading cause of neuropathy worldwide resulting in excess morbidity and mortality. We aimed to develop an artificial intelligence deep learning algorithm to classify the presence or absence of peripheral neuropathy (PN) in participants with diabetes or pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Yanda, Preston, Frank George, Ferdousi, Maryam, Azmi, Shazli, Petropoulos, Ioannis Nikolaos, Kaye, Stephen, Malik, Rayaz Ahmed, Alam, Uazman, Zheng, Yalin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963824/
https://www.ncbi.nlm.nih.gov/pubmed/36835819
http://dx.doi.org/10.3390/jcm12041284
Descripción
Sumario:Diabetic peripheral neuropathy (DPN) is the leading cause of neuropathy worldwide resulting in excess morbidity and mortality. We aimed to develop an artificial intelligence deep learning algorithm to classify the presence or absence of peripheral neuropathy (PN) in participants with diabetes or pre-diabetes using corneal confocal microscopy (CCM) images of the sub-basal nerve plexus. A modified ResNet-50 model was trained to perform the binary classification of PN (PN+) versus no PN (PN−) based on the Toronto consensus criteria. A dataset of 279 participants (149 PN−, 130 PN+) was used to train (n = 200), validate (n = 18), and test (n = 61) the algorithm, utilizing one image per participant. The dataset consisted of participants with type 1 diabetes (n = 88), type 2 diabetes (n = 141), and pre-diabetes (n = 50). The algorithm was evaluated using diagnostic performance metrics and attribution-based methods (gradient-weighted class activation mapping (Grad-CAM) and Guided Grad-CAM). In detecting PN+, the AI-based DLA achieved a sensitivity of 0.91 (95%CI: 0.79–1.0), a specificity of 0.93 (95%CI: 0.83–1.0), and an area under the curve (AUC) of 0.95 (95%CI: 0.83–0.99). Our deep learning algorithm demonstrates excellent results for the diagnosis of PN using CCM. A large-scale prospective real-world study is required to validate its diagnostic efficacy prior to implementation in screening and diagnostic programmes.