Cargando…
Molecular Targets and Mechanisms of 6,7-Dihydroxy-2,4-dimethoxyphenanthrene from Chinese Yam Modulating NF-κB/COX-2 Signaling Pathway: The Application of Molecular Docking and Gene Silencing
Chinese yam (Dioscorea opposita) tuber has a significant effect of invigorating the intestine and improving the symptoms of long-term diarrhea according to the records of the Chinese Pharmacopoeia. Phenanthrene polyphenols from Chinese yam, with higher inhibition of cyclooxygenase-2 (COX-2) than ant...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963849/ https://www.ncbi.nlm.nih.gov/pubmed/36839242 http://dx.doi.org/10.3390/nu15040883 |
_version_ | 1784896356749410304 |
---|---|
author | Nie, Congyi Zou, Yuxiao Liao, Sentai Gao, Qunyu Li, Qian |
author_facet | Nie, Congyi Zou, Yuxiao Liao, Sentai Gao, Qunyu Li, Qian |
author_sort | Nie, Congyi |
collection | PubMed |
description | Chinese yam (Dioscorea opposita) tuber has a significant effect of invigorating the intestine and improving the symptoms of long-term diarrhea according to the records of the Chinese Pharmacopoeia. Phenanthrene polyphenols from Chinese yam, with higher inhibition of cyclooxygenase-2 (COX-2) than anti-inflammatory drugs, are an important material basis in alleviating ulcerative colitis via nuclear factor kappa-B (NF-κB)/COX-2 pathway, based on our previous research. The present study further explored the target and molecular mechanisms of phenanthrenes’ modulation of the NF-κB/COX-2 signaling pathway by means of molecular docking and gene silencing. Firstly, interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α) expression of 6-hydroxy-2,4,7-trimethoxyphenanthrene (PC2)/6,7-dihydroxy-2,4-dimethoxyphe-nanthrene (PC4) were compared on TNF-α induced human colon adenocarcinoma (Caco-2) cells. Secondly, molecular docking and dynamics simulation were implemented for PC2/PC4 and COX-2. Finally, COX-2 silencing was performed on TNF-α induced Caco-2 cells to confirm the target of PC4 on NF-κB/COX-2 pathway. Lower expression of IL-8 and TNF-α in PC4 treated Caco-2 cells indicated that PC4 had stronger anti-inflammatory activity than PC2. The binding of PC4 and COX-2 was stronger due to the hydrogen bond between hydroxyl group and Tyr385. No significant differences were found in phosphorylation nuclear factor kappa-B inhibitor alpha (pIkBα), phosphorylation NF-κB (pNF-κB) and phosphorylation extracellular signal-regulated kinase 1/2 (pERK1/2) expression between control and PC4 group after silencing, while these protein expressions significantly decreased in PC4 group without silencing, which confirmed that COX-2 was the important target for PC4 in alleviating ulcerative colitis. These findings indicate that PC4 was supposed to have inhibited NF-κB pathway mediated inflammation via suppression of positive feedback targeting COX-2. |
format | Online Article Text |
id | pubmed-9963849 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99638492023-02-26 Molecular Targets and Mechanisms of 6,7-Dihydroxy-2,4-dimethoxyphenanthrene from Chinese Yam Modulating NF-κB/COX-2 Signaling Pathway: The Application of Molecular Docking and Gene Silencing Nie, Congyi Zou, Yuxiao Liao, Sentai Gao, Qunyu Li, Qian Nutrients Article Chinese yam (Dioscorea opposita) tuber has a significant effect of invigorating the intestine and improving the symptoms of long-term diarrhea according to the records of the Chinese Pharmacopoeia. Phenanthrene polyphenols from Chinese yam, with higher inhibition of cyclooxygenase-2 (COX-2) than anti-inflammatory drugs, are an important material basis in alleviating ulcerative colitis via nuclear factor kappa-B (NF-κB)/COX-2 pathway, based on our previous research. The present study further explored the target and molecular mechanisms of phenanthrenes’ modulation of the NF-κB/COX-2 signaling pathway by means of molecular docking and gene silencing. Firstly, interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α) expression of 6-hydroxy-2,4,7-trimethoxyphenanthrene (PC2)/6,7-dihydroxy-2,4-dimethoxyphe-nanthrene (PC4) were compared on TNF-α induced human colon adenocarcinoma (Caco-2) cells. Secondly, molecular docking and dynamics simulation were implemented for PC2/PC4 and COX-2. Finally, COX-2 silencing was performed on TNF-α induced Caco-2 cells to confirm the target of PC4 on NF-κB/COX-2 pathway. Lower expression of IL-8 and TNF-α in PC4 treated Caco-2 cells indicated that PC4 had stronger anti-inflammatory activity than PC2. The binding of PC4 and COX-2 was stronger due to the hydrogen bond between hydroxyl group and Tyr385. No significant differences were found in phosphorylation nuclear factor kappa-B inhibitor alpha (pIkBα), phosphorylation NF-κB (pNF-κB) and phosphorylation extracellular signal-regulated kinase 1/2 (pERK1/2) expression between control and PC4 group after silencing, while these protein expressions significantly decreased in PC4 group without silencing, which confirmed that COX-2 was the important target for PC4 in alleviating ulcerative colitis. These findings indicate that PC4 was supposed to have inhibited NF-κB pathway mediated inflammation via suppression of positive feedback targeting COX-2. MDPI 2023-02-09 /pmc/articles/PMC9963849/ /pubmed/36839242 http://dx.doi.org/10.3390/nu15040883 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nie, Congyi Zou, Yuxiao Liao, Sentai Gao, Qunyu Li, Qian Molecular Targets and Mechanisms of 6,7-Dihydroxy-2,4-dimethoxyphenanthrene from Chinese Yam Modulating NF-κB/COX-2 Signaling Pathway: The Application of Molecular Docking and Gene Silencing |
title | Molecular Targets and Mechanisms of 6,7-Dihydroxy-2,4-dimethoxyphenanthrene from Chinese Yam Modulating NF-κB/COX-2 Signaling Pathway: The Application of Molecular Docking and Gene Silencing |
title_full | Molecular Targets and Mechanisms of 6,7-Dihydroxy-2,4-dimethoxyphenanthrene from Chinese Yam Modulating NF-κB/COX-2 Signaling Pathway: The Application of Molecular Docking and Gene Silencing |
title_fullStr | Molecular Targets and Mechanisms of 6,7-Dihydroxy-2,4-dimethoxyphenanthrene from Chinese Yam Modulating NF-κB/COX-2 Signaling Pathway: The Application of Molecular Docking and Gene Silencing |
title_full_unstemmed | Molecular Targets and Mechanisms of 6,7-Dihydroxy-2,4-dimethoxyphenanthrene from Chinese Yam Modulating NF-κB/COX-2 Signaling Pathway: The Application of Molecular Docking and Gene Silencing |
title_short | Molecular Targets and Mechanisms of 6,7-Dihydroxy-2,4-dimethoxyphenanthrene from Chinese Yam Modulating NF-κB/COX-2 Signaling Pathway: The Application of Molecular Docking and Gene Silencing |
title_sort | molecular targets and mechanisms of 6,7-dihydroxy-2,4-dimethoxyphenanthrene from chinese yam modulating nf-κb/cox-2 signaling pathway: the application of molecular docking and gene silencing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963849/ https://www.ncbi.nlm.nih.gov/pubmed/36839242 http://dx.doi.org/10.3390/nu15040883 |
work_keys_str_mv | AT niecongyi moleculartargetsandmechanismsof67dihydroxy24dimethoxyphenanthrenefromchineseyammodulatingnfkbcox2signalingpathwaytheapplicationofmoleculardockingandgenesilencing AT zouyuxiao moleculartargetsandmechanismsof67dihydroxy24dimethoxyphenanthrenefromchineseyammodulatingnfkbcox2signalingpathwaytheapplicationofmoleculardockingandgenesilencing AT liaosentai moleculartargetsandmechanismsof67dihydroxy24dimethoxyphenanthrenefromchineseyammodulatingnfkbcox2signalingpathwaytheapplicationofmoleculardockingandgenesilencing AT gaoqunyu moleculartargetsandmechanismsof67dihydroxy24dimethoxyphenanthrenefromchineseyammodulatingnfkbcox2signalingpathwaytheapplicationofmoleculardockingandgenesilencing AT liqian moleculartargetsandmechanismsof67dihydroxy24dimethoxyphenanthrenefromchineseyammodulatingnfkbcox2signalingpathwaytheapplicationofmoleculardockingandgenesilencing |