Cargando…
Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology
Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963876/ https://www.ncbi.nlm.nih.gov/pubmed/36827119 http://dx.doi.org/10.3390/md21020078 |
_version_ | 1784896363516919808 |
---|---|
author | Kim, Sung Eun Chung, Elina Da Sol Vasileva, Elena A. Mishchenko, Natalia P. Fedoreyev, Sergey A. Stonik, Valentin A. Kim, Hyoung Kyu Nam, Joo Hyun Kim, Sung Joon |
author_facet | Kim, Sung Eun Chung, Elina Da Sol Vasileva, Elena A. Mishchenko, Natalia P. Fedoreyev, Sergey A. Stonik, Valentin A. Kim, Hyoung Kyu Nam, Joo Hyun Kim, Sung Joon |
author_sort | Kim, Sung Eun |
collection | PubMed |
description | Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca(2+)-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K(+) (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC(50) levels of 2.1 and 2.4 μM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (I(TREK2)), but pretreatments with Ech A markedly facilitated I(TREK2) activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pH(e)). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the I(TREK2) maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca(2+)-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A. |
format | Online Article Text |
id | pubmed-9963876 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99638762023-02-26 Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology Kim, Sung Eun Chung, Elina Da Sol Vasileva, Elena A. Mishchenko, Natalia P. Fedoreyev, Sergey A. Stonik, Valentin A. Kim, Hyoung Kyu Nam, Joo Hyun Kim, Sung Joon Mar Drugs Article Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca(2+)-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K(+) (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC(50) levels of 2.1 and 2.4 μM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (I(TREK2)), but pretreatments with Ech A markedly facilitated I(TREK2) activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pH(e)). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the I(TREK2) maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca(2+)-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A. MDPI 2023-01-23 /pmc/articles/PMC9963876/ /pubmed/36827119 http://dx.doi.org/10.3390/md21020078 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Sung Eun Chung, Elina Da Sol Vasileva, Elena A. Mishchenko, Natalia P. Fedoreyev, Sergey A. Stonik, Valentin A. Kim, Hyoung Kyu Nam, Joo Hyun Kim, Sung Joon Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology |
title | Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology |
title_full | Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology |
title_fullStr | Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology |
title_full_unstemmed | Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology |
title_short | Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology |
title_sort | multiple effects of echinochrome a on selected ion channels implicated in skin physiology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963876/ https://www.ncbi.nlm.nih.gov/pubmed/36827119 http://dx.doi.org/10.3390/md21020078 |
work_keys_str_mv | AT kimsungeun multipleeffectsofechinochromeaonselectedionchannelsimplicatedinskinphysiology AT chungelinadasol multipleeffectsofechinochromeaonselectedionchannelsimplicatedinskinphysiology AT vasilevaelenaa multipleeffectsofechinochromeaonselectedionchannelsimplicatedinskinphysiology AT mishchenkonataliap multipleeffectsofechinochromeaonselectedionchannelsimplicatedinskinphysiology AT fedoreyevsergeya multipleeffectsofechinochromeaonselectedionchannelsimplicatedinskinphysiology AT stonikvalentina multipleeffectsofechinochromeaonselectedionchannelsimplicatedinskinphysiology AT kimhyoungkyu multipleeffectsofechinochromeaonselectedionchannelsimplicatedinskinphysiology AT namjoohyun multipleeffectsofechinochromeaonselectedionchannelsimplicatedinskinphysiology AT kimsungjoon multipleeffectsofechinochromeaonselectedionchannelsimplicatedinskinphysiology |