Cargando…
Human Action Recognition: A Taxonomy-Based Survey, Updates, and Opportunities
Human action recognition systems use data collected from a wide range of sensors to accurately identify and interpret human actions. One of the most challenging issues for computer vision is the automatic and precise identification of human activities. A significant increase in feature learning-base...
Autores principales: | Morshed, Md Golam, Sultana, Tangina, Alam, Aftab, Lee, Young-Koo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963970/ https://www.ncbi.nlm.nih.gov/pubmed/36850778 http://dx.doi.org/10.3390/s23042182 |
Ejemplares similares
-
gRDF: An Efficient Compressor with Reduced Structural Regularities That Utilizes gRePair
por: Sultana, Tangina, et al.
Publicado: (2022) -
A Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning
por: Bouchabou, Damien, et al.
Publicado: (2021) -
Feature Fusion of Deep Spatial Features and Handcrafted Spatiotemporal Features for Human Action Recognition
por: Uddin, Md Azher, et al.
Publicado: (2019) -
Human Activity Recognition: Review, Taxonomy and Open Challenges
por: Arshad, Muhammad Haseeb, et al.
Publicado: (2022) -
Updating the taxonomy of Aspergillus in South Africa
por: Visagie, C.M., et al.
Publicado: (2020)