Cargando…
An In-Hospital Mortality Risk Model for Elderly Patients Undergoing Cardiac Valvular Surgery Based on LASSO-Logistic Regression and Machine Learning
Background: To preferably evaluate and predict the risk for in-hospital mortality in elderly patients receiving cardiac valvular surgery, we developed a new prediction model using least absolute shrinkage and selection operator (LASSO)-logistic regression and machine learning (ML) algorithms. Method...
Autores principales: | Zhu, Kun, Lin, Hongyuan, Yang, Xichun, Gong, Jiamiao, An, Kang, Zheng, Zhe, Hou, Jianfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963974/ https://www.ncbi.nlm.nih.gov/pubmed/36826583 http://dx.doi.org/10.3390/jcdd10020087 |
Ejemplares similares
-
Clinical characteristics, outcomes and regional variations of acquired valvular heart disease patients undergoing cardiac surgery in China
por: Lin, Hongyuan, et al.
Publicado: (2022) -
A Comparative Study on Surgical Treatment of Valvular Heart Disease between High-Volume Cardiac Centers in China and STS Data
por: Lin, Hongyuan, et al.
Publicado: (2022) -
Bayesian Lasso and multinomial logistic regression on GPU
por: Češnovar, Rok, et al.
Publicado: (2017) -
Logistic LASSO Regression for Dietary Intakes and Breast Cancer
por: McEligot, Archana J., et al.
Publicado: (2020) -
Applying logistic LASSO regression for the diagnosis of atypical Crohn's disease
por: Li, Ying, et al.
Publicado: (2022)