Cargando…

Near-Full Current Dynamic Range THz Quantum Cascade Laser Frequency Comb

The present study proposes a terahertz quantum cascade laser frequency comb (THz QCL FC) with a semi-insulated surface plasma waveguide characterized by a low threshold current density, high power and a wide current dynamic range. The gain dispersion value and the nonlinear susceptibility were optim...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yu, Li, Weijiang, Li, Yuanyuan, Liu, Junqi, Zhuo, Ning, Yang, Ke, Zhang, Jinchuan, Zhai, Shenqiang, Liu, Shuman, Wang, Lijun, Liu, Fengqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964135/
https://www.ncbi.nlm.nih.gov/pubmed/36838173
http://dx.doi.org/10.3390/mi14020473
Descripción
Sumario:The present study proposes a terahertz quantum cascade laser frequency comb (THz QCL FC) with a semi-insulated surface plasma waveguide characterized by a low threshold current density, high power and a wide current dynamic range. The gain dispersion value and the nonlinear susceptibility were optimized based on the combination of a hybrid bound-to-continuum active region with a semi-insulated surface plasmon waveguide. Without any extra dispersion compensator, stable frequency comb operation within a current dynamic range of more than 97% of the total was revealed by the intermode beat note map. Additionally, a total comb spectral emission of about 300 GHz centered around 4.6 THz was achieved for a 3 mm long and 150 µm wide device. At 10 K, a maximum output power of 22 mW was obtained with an ultra-low threshold current density of 64.4 A·cm(−2).