Cargando…
An Unsupervised Learning Approach for Wayside Train Wheel Flat Detection
One of the most common types of wheel damage is flats which can cause high maintenance costs and enhance the probability of failure and damage to the track components. This study aims to compare the performance of four feature extraction methods, namely, auto-regressive (AR), auto-regressive exogeno...
Autores principales: | Mohammadi, Mohammadreza, Mosleh, Araliya, Vale, Cecilia, Ribeiro, Diogo, Montenegro, Pedro, Meixedo, Andreia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964235/ https://www.ncbi.nlm.nih.gov/pubmed/36850515 http://dx.doi.org/10.3390/s23041910 |
Ejemplares similares
-
Detection of Wheel Polygonization Based on Wayside Monitoring and Artificial Intelligence
por: Guedes, António, et al.
Publicado: (2023) -
Early Identification of Unbalanced Freight Traffic Loads Based on Wayside Monitoring and Artificial Intelligence
por: Silva, R., et al.
Publicado: (2023) -
Wheel Out-of-Roundness Detection Using an Envelope Spectrum Analysis
por: Gonçalves, Vítor, et al.
Publicado: (2023) -
Recent Advances in Wayside Railway Wheel Flat Detection Techniques: A Review
por: Fu, Wenjie, et al.
Publicado: (2023) -
Wayside Detection of Wheel Minor Defects in High-Speed Trains by a Bayesian Blind Source Separation Method
por: Liu, Xiao-Zhou, et al.
Publicado: (2019)