Cargando…
Geometry Sampling-Based Adaption to DCGAN for 3D Face Generation †
Despite progress in the past decades, 3D shape acquisition techniques are still a threshold for various 3D face-based applications and have therefore attracted extensive research. Moreover, advanced 2D data generation models based on deep networks may not be directly applicable to 3D objects because...
Autores principales: | Luo, Guoliang, Xiong, Guoming, Huang, Xiaojun, Zhao, Xin, Tong, Yang, Chen, Qiang, Zhu, Zhiliang, Lei, Haopeng, Lin, Juncong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964279/ https://www.ncbi.nlm.nih.gov/pubmed/36850534 http://dx.doi.org/10.3390/s23041937 |
Ejemplares similares
-
Skin Lesion Synthesis and Classification Using an Improved DCGAN Classifier
por: Behara, Kavita, et al.
Publicado: (2023) -
Parkinson’s Disease EMG Data Augmentation and Simulation with DCGANs and Style Transfer
por: Anicet Zanini, Rafael, et al.
Publicado: (2020) -
Classification of Underwater Target Based on S-ResNet and Modified DCGAN Models
por: Jiang, Zhe, et al.
Publicado: (2022) -
A Novel COVID-19 Detection Model Based on DCGAN and Deep Transfer Learning
por: Puttagunta, Muralikrishna, et al.
Publicado: (2022) -
A Novel Image-Based Diagnosis Method Using Improved DCGAN for Rotating Machinery
por: Gao, Yangde, et al.
Publicado: (2022)