Cargando…

Therapeutic Efficacy and Radiobiological Effects of Boric-Acid-Mediated BNCT in an Osteosarcoma-Bearing SD Rat Model

Background: Osteosarcoma (OS) is the most common primary malignancy of the bone and is notoriously resistant to radiation therapy. High-dose cytotoxic chemotherapy and surgical resection have improved the survival rate and prognosis of patients with OS. Nonetheless, treatment challenges remain when...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsu, Chen-Fang, Liu, Hong-Ming, Peir, Jinn-Jer, Liao, Jiunn-Wang, Chen, Kuan-Sheng, Chen, Yi-Wei, Chuang, Yung-Jen, Chou, Fong-In
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964381/
https://www.ncbi.nlm.nih.gov/pubmed/36836871
http://dx.doi.org/10.3390/life13020514
_version_ 1784896491291148288
author Hsu, Chen-Fang
Liu, Hong-Ming
Peir, Jinn-Jer
Liao, Jiunn-Wang
Chen, Kuan-Sheng
Chen, Yi-Wei
Chuang, Yung-Jen
Chou, Fong-In
author_facet Hsu, Chen-Fang
Liu, Hong-Ming
Peir, Jinn-Jer
Liao, Jiunn-Wang
Chen, Kuan-Sheng
Chen, Yi-Wei
Chuang, Yung-Jen
Chou, Fong-In
author_sort Hsu, Chen-Fang
collection PubMed
description Background: Osteosarcoma (OS) is the most common primary malignancy of the bone and is notoriously resistant to radiation therapy. High-dose cytotoxic chemotherapy and surgical resection have improved the survival rate and prognosis of patients with OS. Nonetheless, treatment challenges remain when the tumor cannot be removed by surgery. Boron neutron capture therapy (BNCT) provides high linear energy transfer (LET) radiation, and its internal targeted characteristics make BNCT a novel therapy for removing OS and reducing radiation damage to adjacent healthy tissues. Methods: In this study, a UMR-106-grafted OS rat model was developed, and boric acid (BA) was used as the boron drug for BNCT. The pharmacokinetics of BA, following intravenous injection, were evaluated to determine the optimal time window for neutron irradiation. OS-bearing rats were irradiated by an epithermal neutron beam at Tsing Hua Open-Pool Reactor (THOR). The therapeutic efficacy of and tissue response after BNCT were evaluated by radiographic and histopathological observations. Results: OS-bearing rats were irradiated by neutrons in the first hour following the intravenous injection of BA. The prescription-absorbed doses in the tumor regions were 5.8 and 11.0 Gy. BNCT reduced the body weight of the tumor-bearing rats, but they recovered after a few days. The BA-mediated BNCT effectively controlled the orthotopic OS tumor, reduced osteolysis, and induced bone healing. Autoradiography and histological analysis confirmed that the BA retention region is consistent with the calcification region in OS tissue. Conclusion: BA is specifically retained in OS, and the BA-mediated BNCT can significantly reduce the tumor burden and osteolysis in OS-bearing rats.
format Online
Article
Text
id pubmed-9964381
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99643812023-02-26 Therapeutic Efficacy and Radiobiological Effects of Boric-Acid-Mediated BNCT in an Osteosarcoma-Bearing SD Rat Model Hsu, Chen-Fang Liu, Hong-Ming Peir, Jinn-Jer Liao, Jiunn-Wang Chen, Kuan-Sheng Chen, Yi-Wei Chuang, Yung-Jen Chou, Fong-In Life (Basel) Article Background: Osteosarcoma (OS) is the most common primary malignancy of the bone and is notoriously resistant to radiation therapy. High-dose cytotoxic chemotherapy and surgical resection have improved the survival rate and prognosis of patients with OS. Nonetheless, treatment challenges remain when the tumor cannot be removed by surgery. Boron neutron capture therapy (BNCT) provides high linear energy transfer (LET) radiation, and its internal targeted characteristics make BNCT a novel therapy for removing OS and reducing radiation damage to adjacent healthy tissues. Methods: In this study, a UMR-106-grafted OS rat model was developed, and boric acid (BA) was used as the boron drug for BNCT. The pharmacokinetics of BA, following intravenous injection, were evaluated to determine the optimal time window for neutron irradiation. OS-bearing rats were irradiated by an epithermal neutron beam at Tsing Hua Open-Pool Reactor (THOR). The therapeutic efficacy of and tissue response after BNCT were evaluated by radiographic and histopathological observations. Results: OS-bearing rats were irradiated by neutrons in the first hour following the intravenous injection of BA. The prescription-absorbed doses in the tumor regions were 5.8 and 11.0 Gy. BNCT reduced the body weight of the tumor-bearing rats, but they recovered after a few days. The BA-mediated BNCT effectively controlled the orthotopic OS tumor, reduced osteolysis, and induced bone healing. Autoradiography and histological analysis confirmed that the BA retention region is consistent with the calcification region in OS tissue. Conclusion: BA is specifically retained in OS, and the BA-mediated BNCT can significantly reduce the tumor burden and osteolysis in OS-bearing rats. MDPI 2023-02-13 /pmc/articles/PMC9964381/ /pubmed/36836871 http://dx.doi.org/10.3390/life13020514 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hsu, Chen-Fang
Liu, Hong-Ming
Peir, Jinn-Jer
Liao, Jiunn-Wang
Chen, Kuan-Sheng
Chen, Yi-Wei
Chuang, Yung-Jen
Chou, Fong-In
Therapeutic Efficacy and Radiobiological Effects of Boric-Acid-Mediated BNCT in an Osteosarcoma-Bearing SD Rat Model
title Therapeutic Efficacy and Radiobiological Effects of Boric-Acid-Mediated BNCT in an Osteosarcoma-Bearing SD Rat Model
title_full Therapeutic Efficacy and Radiobiological Effects of Boric-Acid-Mediated BNCT in an Osteosarcoma-Bearing SD Rat Model
title_fullStr Therapeutic Efficacy and Radiobiological Effects of Boric-Acid-Mediated BNCT in an Osteosarcoma-Bearing SD Rat Model
title_full_unstemmed Therapeutic Efficacy and Radiobiological Effects of Boric-Acid-Mediated BNCT in an Osteosarcoma-Bearing SD Rat Model
title_short Therapeutic Efficacy and Radiobiological Effects of Boric-Acid-Mediated BNCT in an Osteosarcoma-Bearing SD Rat Model
title_sort therapeutic efficacy and radiobiological effects of boric-acid-mediated bnct in an osteosarcoma-bearing sd rat model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964381/
https://www.ncbi.nlm.nih.gov/pubmed/36836871
http://dx.doi.org/10.3390/life13020514
work_keys_str_mv AT hsuchenfang therapeuticefficacyandradiobiologicaleffectsofboricacidmediatedbnctinanosteosarcomabearingsdratmodel
AT liuhongming therapeuticefficacyandradiobiologicaleffectsofboricacidmediatedbnctinanosteosarcomabearingsdratmodel
AT peirjinnjer therapeuticefficacyandradiobiologicaleffectsofboricacidmediatedbnctinanosteosarcomabearingsdratmodel
AT liaojiunnwang therapeuticefficacyandradiobiologicaleffectsofboricacidmediatedbnctinanosteosarcomabearingsdratmodel
AT chenkuansheng therapeuticefficacyandradiobiologicaleffectsofboricacidmediatedbnctinanosteosarcomabearingsdratmodel
AT chenyiwei therapeuticefficacyandradiobiologicaleffectsofboricacidmediatedbnctinanosteosarcomabearingsdratmodel
AT chuangyungjen therapeuticefficacyandradiobiologicaleffectsofboricacidmediatedbnctinanosteosarcomabearingsdratmodel
AT choufongin therapeuticefficacyandradiobiologicaleffectsofboricacidmediatedbnctinanosteosarcomabearingsdratmodel