Cargando…

Static and Dynamic Multiparameter Assessment of Structural Elements Using Chirped Fiber Bragg Gratings

This paper presents the development, analysis, and application of chirped fiber Bragg gratings (CFBGs) for dynamic and static measurements of beams of different materials in the single-cantilever configuration. In this case, the beams were numerically analyzed using the finite-element method (FEM) f...

Descripción completa

Detalles Bibliográficos
Autores principales: Macedo, Leandro, Souza, Edson A., Frizera, Anselmo, Pontes, Maria José, Marques, Carlos, Leal-Junior, Arnaldo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964405/
https://www.ncbi.nlm.nih.gov/pubmed/36850458
http://dx.doi.org/10.3390/s23041860
_version_ 1784896497147445248
author Macedo, Leandro
Souza, Edson A.
Frizera, Anselmo
Pontes, Maria José
Marques, Carlos
Leal-Junior, Arnaldo
author_facet Macedo, Leandro
Souza, Edson A.
Frizera, Anselmo
Pontes, Maria José
Marques, Carlos
Leal-Junior, Arnaldo
author_sort Macedo, Leandro
collection PubMed
description This paper presents the development, analysis, and application of chirped fiber Bragg gratings (CFBGs) for dynamic and static measurements of beams of different materials in the single-cantilever configuration. In this case, the beams were numerically analyzed using the finite-element method (FEM) for the assessment of the natural frequencies and vibration modes of the beam for the dynamic analysis of the structural element. Furthermore, the static numerical analysis was performed using a load at the free end of the beam, where the maximum strain and its distribution along the beam were analyzed, especially in the region at which the FBG was positioned. The experimental evaluation of the proposed CFBG sensor was performed in static conditions for forces from 0 to 50 N (in 10 N steps) applied at the free end of the beam, whereas the dynamic evaluation was performed by means of positioning an unbalanced motor at the end of the beam, which was excited at 16 Hz, 65 Hz, 100 Hz, and 131 Hz. The results showed the feasibility of the proposed device for the simultaneous assessment of the force and strain distribution along the CFBG region using the wavelength shift and the full-width at half-maximum (FWHM), respectively. In these cases, the determination coefficients of the spectral features as a function of the force and strain distribution were higher than 0.99 in all analyzed cases, where a potential resolution of 0.25 N was obtained on the force assessment. In the dynamic tests, the frequency spectrum of the sensor responses indicated a frequency peak at the excited frequency in all analyzed cases. Therefore, the proposed sensor device is a suitable option to extend the performance of sensors for structural health assessment, since it is possible to simultaneously measure different parameters in dynamic and static conditions using only one sensor device, which, due to its multiplexing capabilities, can be integrated with additional optical fiber sensors for the complete shape reconstruction with millimeter-range spatial resolution.
format Online
Article
Text
id pubmed-9964405
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99644052023-02-26 Static and Dynamic Multiparameter Assessment of Structural Elements Using Chirped Fiber Bragg Gratings Macedo, Leandro Souza, Edson A. Frizera, Anselmo Pontes, Maria José Marques, Carlos Leal-Junior, Arnaldo Sensors (Basel) Article This paper presents the development, analysis, and application of chirped fiber Bragg gratings (CFBGs) for dynamic and static measurements of beams of different materials in the single-cantilever configuration. In this case, the beams were numerically analyzed using the finite-element method (FEM) for the assessment of the natural frequencies and vibration modes of the beam for the dynamic analysis of the structural element. Furthermore, the static numerical analysis was performed using a load at the free end of the beam, where the maximum strain and its distribution along the beam were analyzed, especially in the region at which the FBG was positioned. The experimental evaluation of the proposed CFBG sensor was performed in static conditions for forces from 0 to 50 N (in 10 N steps) applied at the free end of the beam, whereas the dynamic evaluation was performed by means of positioning an unbalanced motor at the end of the beam, which was excited at 16 Hz, 65 Hz, 100 Hz, and 131 Hz. The results showed the feasibility of the proposed device for the simultaneous assessment of the force and strain distribution along the CFBG region using the wavelength shift and the full-width at half-maximum (FWHM), respectively. In these cases, the determination coefficients of the spectral features as a function of the force and strain distribution were higher than 0.99 in all analyzed cases, where a potential resolution of 0.25 N was obtained on the force assessment. In the dynamic tests, the frequency spectrum of the sensor responses indicated a frequency peak at the excited frequency in all analyzed cases. Therefore, the proposed sensor device is a suitable option to extend the performance of sensors for structural health assessment, since it is possible to simultaneously measure different parameters in dynamic and static conditions using only one sensor device, which, due to its multiplexing capabilities, can be integrated with additional optical fiber sensors for the complete shape reconstruction with millimeter-range spatial resolution. MDPI 2023-02-07 /pmc/articles/PMC9964405/ /pubmed/36850458 http://dx.doi.org/10.3390/s23041860 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Macedo, Leandro
Souza, Edson A.
Frizera, Anselmo
Pontes, Maria José
Marques, Carlos
Leal-Junior, Arnaldo
Static and Dynamic Multiparameter Assessment of Structural Elements Using Chirped Fiber Bragg Gratings
title Static and Dynamic Multiparameter Assessment of Structural Elements Using Chirped Fiber Bragg Gratings
title_full Static and Dynamic Multiparameter Assessment of Structural Elements Using Chirped Fiber Bragg Gratings
title_fullStr Static and Dynamic Multiparameter Assessment of Structural Elements Using Chirped Fiber Bragg Gratings
title_full_unstemmed Static and Dynamic Multiparameter Assessment of Structural Elements Using Chirped Fiber Bragg Gratings
title_short Static and Dynamic Multiparameter Assessment of Structural Elements Using Chirped Fiber Bragg Gratings
title_sort static and dynamic multiparameter assessment of structural elements using chirped fiber bragg gratings
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964405/
https://www.ncbi.nlm.nih.gov/pubmed/36850458
http://dx.doi.org/10.3390/s23041860
work_keys_str_mv AT macedoleandro staticanddynamicmultiparameterassessmentofstructuralelementsusingchirpedfiberbragggratings
AT souzaedsona staticanddynamicmultiparameterassessmentofstructuralelementsusingchirpedfiberbragggratings
AT frizeraanselmo staticanddynamicmultiparameterassessmentofstructuralelementsusingchirpedfiberbragggratings
AT pontesmariajose staticanddynamicmultiparameterassessmentofstructuralelementsusingchirpedfiberbragggratings
AT marquescarlos staticanddynamicmultiparameterassessmentofstructuralelementsusingchirpedfiberbragggratings
AT lealjuniorarnaldo staticanddynamicmultiparameterassessmentofstructuralelementsusingchirpedfiberbragggratings