Cargando…
Differential Susceptibility of Mixed Polymicrobial Biofilms Involving Ocular Coccoid Bacteria (Staphylococcus aureus and S. epidermidis) and a Filamentous Fungus (Fusarium solani) on Ex Vivo Human Corneas
Biofilms confer several advantages to the organisms associated with them, such as increased resistances to antibacterial and antifungal compounds compared to free living cells. Compared to monomicrobial biofilms involving a single microorganism, biofilms composed of microorganisms affiliated to bact...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964441/ https://www.ncbi.nlm.nih.gov/pubmed/36838378 http://dx.doi.org/10.3390/microorganisms11020413 |
Sumario: | Biofilms confer several advantages to the organisms associated with them, such as increased resistances to antibacterial and antifungal compounds compared to free living cells. Compared to monomicrobial biofilms involving a single microorganism, biofilms composed of microorganisms affiliated to bacterial and fungal kingdoms are predominant in nature. Despite the predominance of polymicrobial biofilms, and more so mixed polymicrobial biofilms, they are rarely studied. The objective of the current study is to evaluate the potential of ocular bacteria and a filamentous fungus to form monomicrobial and mixed polymicrobial biofilms on synthetic and natural substrates and to monitor their response to antibiotics. In this sense, we demonstrated that the ocular pathogens Staphylococcus aureus, S. epidermidis, and Fusarium solani form monomicrobial and mixed polymicrobial biofilms both on tissue culture polystyrene plates and on ex vivo human corneas from cadavers using confocal microscopy and scanning electron microscopy. Additionally, the mixed polymicrobial biofilms involving the above ocular bacteria and a filamentous fungus were less susceptible to different antibacterials and antifungals in relation to the corresponding control planktonic cells. Further, the MICs to the screened antibacterials and antifungals in polymicrobial biofilms involving a bacterium or a fungus was either increased, decreased, or unchanged compared to the corresponding individual bacterial or fungal biofilm. The results would be useful to the ophthalmologist to plan effective treatment regimens for the eye since these are common pathogens of the eye causing keratitis, endophthalmitis, conjunctivitis, etc. |
---|