Cargando…
Emotion Classification from Multi-Band Electroencephalogram Data Using Dynamic Simplifying Graph Convolutional Network and Channel Style Recalibration Module
Because of its ability to objectively reflect people’s emotional states, electroencephalogram (EEG) has been attracting increasing research attention for emotion classification. The classification method based on spatial-domain analysis is one of the research hotspots. However, most previous studies...
Autores principales: | Zhu, Xiaoliang, Liu, Gendong, Zhao, Liang, Rong, Wenting, Sun, Junyi, Liu, Ran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964605/ https://www.ncbi.nlm.nih.gov/pubmed/36850512 http://dx.doi.org/10.3390/s23041917 |
Ejemplares similares
-
EEG Emotion Classification Network Based on Attention Fusion of Multi-Channel Band Features
por: Zhu, Xiaoliang, et al.
Publicado: (2022) -
Spatial–temporal graph convolutional network for Alzheimer classification based on brain functional connectivity imaging of electroencephalogram
por: Shan, Xiaocai, et al.
Publicado: (2022) -
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
por: Gao, Yunyuan, et al.
Publicado: (2020) -
The multiscale 3D convolutional network for emotion recognition based on electroencephalogram
por: Su, Yun, et al.
Publicado: (2022) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Huang, Jing-Shan, et al.
Publicado: (2021)