Cargando…
Selective Deeply Supervised Multi-Scale Attention Network for Brain Tumor Segmentation
Brain tumors are among the deadliest forms of cancer, characterized by abnormal proliferation of brain cells. While early identification of brain tumors can greatly aid in their therapy, the process of manual segmentation performed by expert doctors, which is often time-consuming, tedious, and prone...
Autores principales: | Rehman, Azka, Usman, Muhammad, Shahid, Abdullah, Latif, Siddique, Qadir, Junaid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964702/ https://www.ncbi.nlm.nih.gov/pubmed/36850942 http://dx.doi.org/10.3390/s23042346 |
Ejemplares similares
-
Dual-Stage Deeply Supervised Attention-Based Convolutional Neural Networks for Mandibular Canal Segmentation in CBCT Scans
por: Usman, Muhammad, et al.
Publicado: (2022) -
SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation
por: Ullah, Zahid, et al.
Publicado: (2023) -
Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma
por: Le’Clerc Arrastia, Jean, et al.
Publicado: (2021) -
Retrospective Motion Correction in Multishot MRI using Generative Adversarial Network
por: Usman, Muhammad, et al.
Publicado: (2020) -
Pelvic U-Net: multi-label semantic segmentation of pelvic organs at risk for radiation therapy anal cancer patients using a deeply supervised shuffle attention convolutional neural network
por: Lempart, Michael, et al.
Publicado: (2022)