Cargando…

The Possibility of IPC to Prevent Ischemic-Reperfusion Injury in Skeletal Muscle in a Rat

Blood removal with air tourniquets for a long time induces muscle damage after reperfusion. Ischemic preconditioning (IPC) has a protective effect against ischemia-reperfusion injury in striated muscle and myocardium. However, the mechanism of action of IPC on skeletal muscle injury is unclear. Thus...

Descripción completa

Detalles Bibliográficos
Autores principales: Morikawa, Takanori, Shimasaki, Miyako, Ichiseki, Toru, Ueda, Shusuke, Ueda, Yoshimichi, Takahashi, Kan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964745/
https://www.ncbi.nlm.nih.gov/pubmed/36836038
http://dx.doi.org/10.3390/jcm12041501
Descripción
Sumario:Blood removal with air tourniquets for a long time induces muscle damage after reperfusion. Ischemic preconditioning (IPC) has a protective effect against ischemia-reperfusion injury in striated muscle and myocardium. However, the mechanism of action of IPC on skeletal muscle injury is unclear. Thus, this study aimed to investigate the effect of IPC in reducing skeletal muscle damage caused by ischemia-reperfusion injury. The hindlimbs of 6-month-old rats were wounded with air tourniquets at a carminative blood pressure of 300 mmHg on the thighs. Rats were divided into the IPC (−) group and the IPC (+) group. The vascular endothelial growth factor (VEGF), 8-hydroxyguanosine (8-OHdG), and cyclooxygenase 2 (COX-2) were investigated by protein levels. Quantitative analysis of apoptosis was performed using the TUNEL method. Compared with the IPC (−) group, the IPC (+) group retained the VEGF expression, and the COX-2 and 8-OHdG expressions were suppressed. The proportion of apoptosis cells decreased in the IPC (+) group compared with the IPC (−) group. IPC in skeletal muscles proliferated VEGF and suppressed inflammatory response and oxidative DNA damage. IPC has the potential to reduce muscle damage after ischemia-reperfusion.