Cargando…
Convolutional Neural Network Bootstrapped by Dynamic Segmentation and Stigmergy-Based Encoding for Real-Time Human Activity Recognition in Smart Homes
Recently, deep learning (DL) approaches have been extensively employed to recognize human activities in smart buildings, which greatly broaden the scope of applications in this field. Convolutional neural networks (CNN), well known for feature extraction and activity classification, have been applie...
Autores principales: | Najeh, Houda, Lohr, Christophe, Leduc, Benoit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964787/ https://www.ncbi.nlm.nih.gov/pubmed/36850567 http://dx.doi.org/10.3390/s23041969 |
Ejemplares similares
-
Dynamic Segmentation of Sensor Events for Real-Time Human Activity Recognition in a Smart Home Context
por: Najeh, Houda, et al.
Publicado: (2022) -
A Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning
por: Bouchabou, Damien, et al.
Publicado: (2021) -
Evolutionary models of lateralization: Steps toward stigmergy?
por: Tonello, Lucio, et al.
Publicado: (2023) -
A Smart Home Digital Twin to Support the Recognition of Activities of Daily Living
por: Bouchabou, Damien, et al.
Publicado: (2023) -
Stigmergy: A key driver of self-organization in bacterial biofilms
por: Gloag, Erin S, et al.
Publicado: (2013)