Cargando…
Numerical Design of a Thread-Optimized Gripping System for Lap Joint Testing in a Split Hopkinson Apparatus
Currently, few experimental methods exist that enable the mechanical characterization of adhesives under high strain rates. One such method is the Split Hopkinson Bar (SHB) test. The mechanical characterization of adhesives is performed using different specimen configurations, such as Single Lap Joi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964832/ https://www.ncbi.nlm.nih.gov/pubmed/36850872 http://dx.doi.org/10.3390/s23042273 |
Sumario: | Currently, few experimental methods exist that enable the mechanical characterization of adhesives under high strain rates. One such method is the Split Hopkinson Bar (SHB) test. The mechanical characterization of adhesives is performed using different specimen configurations, such as Single Lap Joint (SLJ) specimens. A gripping system, attached to the bars through threading, was conceived to enable the testing of SLJs. An optimization study for selecting the best thread was performed, analyzing the thread type, the nominal diameter, and the thread pitch. Afterwards, the gripping system geometry was numerically evaluated. The optimal threaded connection for the specimen consists of a trapezoidal thread with a 14 mm diameter and a 2 mm thread pitch. To validate the gripping system, the load–displacement ([Formula: see text]) curve of an SLJ, which was simulated as if it were tested on the SHB apparatus, was compared with an analogous curve from a validated drop-weight test numerical model. |
---|