Cargando…

Study on SAW Methane Sensor Based on Cryptophane-A Composite Film

Surface Acoustic Wave (SAW) methane-sensing technology is a new way to detect methane at room temperature. However, the material and structure of the sensitive film are the important factors affecting the detection performance of the sensor. In this paper—with a SAW methane sensor using graphene–nic...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xinlei, Shen, Bin, Jiang, Leiming, Yang, Haiyang, Jin, Chunbo, Zhou, Tianshun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964867/
https://www.ncbi.nlm.nih.gov/pubmed/36837966
http://dx.doi.org/10.3390/mi14020266
Descripción
Sumario:Surface Acoustic Wave (SAW) methane-sensing technology is a new way to detect methane at room temperature. However, the material and structure of the sensitive film are the important factors affecting the detection performance of the sensor. In this paper—with a SAW methane sensor using graphene–nickel cavitation—a composite film is proposed, which can work at room temperature. A delay linear dual-channel differential oscillator with center frequency of 204.3 MHz and insertion loss of −5.658 dB was designed; Cryptophane-A material was prepared by the “three-step method”. The composite sensitive film was synthesized by a drop coating method, electrochemical deposition method and electroplating method. The composite film was characterized by SEM. The sensor performance test system and gas sensitivity test system were constructed to determine the response performance of the sensor at concentrations of 0~5% CH(4). The results showed that the sensor had a good response recovery performance in the test concentration range, and the frequency offset was positively correlated with methane concentration. The 90% average response time and recovery times were 41.2 s and 57 s, respectively. The sensor sensitivity was 809.4 ± 6.93 Hz/(1% CH(4)). This study provides a good theoretical basis for the development of surface acoustic-wave methane sensors.