Cargando…

New Insights into the Biological Response Triggered by Dextran-Coated Maghemite Nanoparticles in Pancreatic Cancer Cells and Their Potential for Theranostic Applications

Iron oxide nanoparticles are one of the most promising tools for theranostic applications of pancreatic cancer due to their unique physicochemical and magnetic properties making them suitable for both diagnosis and therapy. Thus, our study aimed to characterize the properties of dextran-coated iron...

Descripción completa

Detalles Bibliográficos
Autores principales: Balas, Mihaela, Predoi, Daniela, Burtea, Carmen, Dinischiotu, Anca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965009/
https://www.ncbi.nlm.nih.gov/pubmed/36834718
http://dx.doi.org/10.3390/ijms24043307
Descripción
Sumario:Iron oxide nanoparticles are one of the most promising tools for theranostic applications of pancreatic cancer due to their unique physicochemical and magnetic properties making them suitable for both diagnosis and therapy. Thus, our study aimed to characterize the properties of dextran-coated iron oxide nanoparticles (DIO-NPs) of maghemite (γ-Fe(2)O(3)) type synthesized by co-precipitation and to investigate their effects (low-dose versus high-dose) on pancreatic cancer cells focusing on NP cellular uptake, MR contrast, and toxicological profile. This paper also addressed the modulation of heat shock proteins (HSPs) and p53 protein expression as well as the potential of DIO-NPs for theranostic purposes. DIO-NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering analyses (DLS), and zeta potential. Pancreatic cancer cells (PANC-1 cell line) were exposed to different doses of dextran-coated ɣ-Fe(2)O(3) NPs (14, 28, 42, 56 μg/mL) for up to 72 h. The results revealed that DIO-NPs with a hydrodynamic diameter of 16.3 nm produce a significant negative contrast using a 7 T MRI scanner correlated with dose-dependent cellular iron uptake and toxicity levels. We showed that DIO-NPs are biocompatible up to a concentration of 28 μg/mL (low-dose), while exposure to a concentration of 56 μg/mL (high-dose) caused a reduction in PANC-1 cell viability to 50% after 72 h by inducing reactive oxygen species (ROS) production, reduced glutathione (GSH) depletion, lipid peroxidation, enhancement of caspase-1 activity, and LDH release. An alteration in Hsp70 and Hsp90 protein expression was also observed. At low doses, these findings provide evidence that DIO-NPs could act as safe platforms in drug delivery, as well as antitumoral and imaging agents for theranostic uses in pancreatic cancer.