Cargando…
UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping
Recent advances in unmanned aerial vehicles (UAV), mini and mobile sensors, and GeoAI (a blend of geospatial and artificial intelligence (AI) research) are the main highlights among agricultural innovations to improve crop productivity and thus secure vulnerable food systems. This study investigated...
Autores principales: | Nguyen, Canh, Sagan, Vasit, Bhadra, Sourav, Moose, Stephen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965167/ https://www.ncbi.nlm.nih.gov/pubmed/36850425 http://dx.doi.org/10.3390/s23041827 |
Ejemplares similares
-
Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning
por: Nguyen, Canh, et al.
Publicado: (2021) -
Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning
por: Hartling, Sean, et al.
Publicado: (2019) -
Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits
por: Shu, Meiyan, et al.
Publicado: (2022) -
Combining self-organizing maps and biplot analysis to preselect maize phenotypic components based on UAV high-throughput phenotyping platform
por: Han, Liang, et al.
Publicado: (2019) -
High-Throughput Switchgrass Phenotyping and Biomass Modeling by UAV
por: Li, Fei, et al.
Publicado: (2020)