Cargando…
Bayesian Spatio-Temporal Prediction and Counterfactual Generation: An Application in Non-Pharmaceutical Interventions in COVID-19
The spatio-temporal course of an epidemic (such as COVID-19) can be significantly affected by non-pharmaceutical interventions (NPIs) such as full or partial lockdowns. Bayesian Susceptible-Infected-Removed (SIR) models can be applied to the spatio-temporal spread of infectious diseases (STIFs) (suc...
Autores principales: | Lawson, Andrew, Rotejanaprasert, Chawarat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965276/ https://www.ncbi.nlm.nih.gov/pubmed/36851538 http://dx.doi.org/10.3390/v15020325 |
Ejemplares similares
-
Bayesian spatio-temporal distributed lag modeling for delayed climatic effects on sparse malaria incidence data
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2021) -
A Bayesian Quantile Modeling for Spatiotemporal Relative Risk: An Application to Adverse Risk Detection of Respiratory Diseases in South Carolina, USA
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2018) -
Spatiotemporal reproduction number with Bayesian model selection for evaluation of emerging infectious disease transmissibility: an application to COVID-19 national surveillance data
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2023) -
Evaluation of predictive capability of Bayesian spatio-temporal models for Covid-19 spread
por: Lawson, Andrew B.
Publicado: (2023) -
Spatiotemporal multi-disease transmission dynamic measure for emerging diseases: an application to dengue and zika integrated surveillance in Thailand
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2019)