Cargando…
Proteomic Analysis Reveals a Critical Role of the Glycosyl Hydrolase 17 Protein in Panax ginseng Leaves under Salt Stress
Ginseng, an important crop in East Asia, exhibits multiple medicinal and nutritional benefits because of the presence of ginsenosides. On the other hand, the ginseng yield is severely affected by abiotic stressors, particularly salinity, which reduces yield and quality. Therefore, efforts are needed...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965409/ https://www.ncbi.nlm.nih.gov/pubmed/36835103 http://dx.doi.org/10.3390/ijms24043693 |
_version_ | 1784896756192903168 |
---|---|
author | Jung, Ju-Young Min, Cheol Woo Jang, Jeong Woo Gupta, Ravi Kim, Ji-Hyun Kim, Young-Hun Cho, Sung Won Song, Young Hun Jo, Ick-Hyun Rakwal, Randeep Kim, Yu-Jin Kim, Sun Tae |
author_facet | Jung, Ju-Young Min, Cheol Woo Jang, Jeong Woo Gupta, Ravi Kim, Ji-Hyun Kim, Young-Hun Cho, Sung Won Song, Young Hun Jo, Ick-Hyun Rakwal, Randeep Kim, Yu-Jin Kim, Sun Tae |
author_sort | Jung, Ju-Young |
collection | PubMed |
description | Ginseng, an important crop in East Asia, exhibits multiple medicinal and nutritional benefits because of the presence of ginsenosides. On the other hand, the ginseng yield is severely affected by abiotic stressors, particularly salinity, which reduces yield and quality. Therefore, efforts are needed to improve the ginseng yield during salinity stress, but salinity stress-induced changes in ginseng are poorly understood, particularly at the proteome-wide level. In this study, we report the comparative proteome profiles of ginseng leaves at four different time points (mock, 24, 72, and 96 h) using a label-free quantitative proteome approach. Of the 2484 proteins identified, 468 were salt-responsive. In particular, glycosyl hydrolase 17 (PgGH17), catalase-peroxidase 2, voltage-gated potassium channel subunit beta-2, fructose-1,6-bisphosphatase class 1, and chlorophyll a-b binding protein accumulated in ginseng leaves in response to salt stress. The heterologous expression of PgGH17 in Arabidopsis thaliana improved the salt tolerance of transgenic lines without compromising plant growth. Overall, this study uncovers the salt-induced changes in ginseng leaves at the proteome level and highlights the critical role of PgGH17 in salt stress tolerance in ginseng. |
format | Online Article Text |
id | pubmed-9965409 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99654092023-02-26 Proteomic Analysis Reveals a Critical Role of the Glycosyl Hydrolase 17 Protein in Panax ginseng Leaves under Salt Stress Jung, Ju-Young Min, Cheol Woo Jang, Jeong Woo Gupta, Ravi Kim, Ji-Hyun Kim, Young-Hun Cho, Sung Won Song, Young Hun Jo, Ick-Hyun Rakwal, Randeep Kim, Yu-Jin Kim, Sun Tae Int J Mol Sci Article Ginseng, an important crop in East Asia, exhibits multiple medicinal and nutritional benefits because of the presence of ginsenosides. On the other hand, the ginseng yield is severely affected by abiotic stressors, particularly salinity, which reduces yield and quality. Therefore, efforts are needed to improve the ginseng yield during salinity stress, but salinity stress-induced changes in ginseng are poorly understood, particularly at the proteome-wide level. In this study, we report the comparative proteome profiles of ginseng leaves at four different time points (mock, 24, 72, and 96 h) using a label-free quantitative proteome approach. Of the 2484 proteins identified, 468 were salt-responsive. In particular, glycosyl hydrolase 17 (PgGH17), catalase-peroxidase 2, voltage-gated potassium channel subunit beta-2, fructose-1,6-bisphosphatase class 1, and chlorophyll a-b binding protein accumulated in ginseng leaves in response to salt stress. The heterologous expression of PgGH17 in Arabidopsis thaliana improved the salt tolerance of transgenic lines without compromising plant growth. Overall, this study uncovers the salt-induced changes in ginseng leaves at the proteome level and highlights the critical role of PgGH17 in salt stress tolerance in ginseng. MDPI 2023-02-12 /pmc/articles/PMC9965409/ /pubmed/36835103 http://dx.doi.org/10.3390/ijms24043693 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jung, Ju-Young Min, Cheol Woo Jang, Jeong Woo Gupta, Ravi Kim, Ji-Hyun Kim, Young-Hun Cho, Sung Won Song, Young Hun Jo, Ick-Hyun Rakwal, Randeep Kim, Yu-Jin Kim, Sun Tae Proteomic Analysis Reveals a Critical Role of the Glycosyl Hydrolase 17 Protein in Panax ginseng Leaves under Salt Stress |
title | Proteomic Analysis Reveals a Critical Role of the Glycosyl Hydrolase 17 Protein in Panax ginseng Leaves under Salt Stress |
title_full | Proteomic Analysis Reveals a Critical Role of the Glycosyl Hydrolase 17 Protein in Panax ginseng Leaves under Salt Stress |
title_fullStr | Proteomic Analysis Reveals a Critical Role of the Glycosyl Hydrolase 17 Protein in Panax ginseng Leaves under Salt Stress |
title_full_unstemmed | Proteomic Analysis Reveals a Critical Role of the Glycosyl Hydrolase 17 Protein in Panax ginseng Leaves under Salt Stress |
title_short | Proteomic Analysis Reveals a Critical Role of the Glycosyl Hydrolase 17 Protein in Panax ginseng Leaves under Salt Stress |
title_sort | proteomic analysis reveals a critical role of the glycosyl hydrolase 17 protein in panax ginseng leaves under salt stress |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965409/ https://www.ncbi.nlm.nih.gov/pubmed/36835103 http://dx.doi.org/10.3390/ijms24043693 |
work_keys_str_mv | AT jungjuyoung proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress AT mincheolwoo proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress AT jangjeongwoo proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress AT guptaravi proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress AT kimjihyun proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress AT kimyounghun proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress AT chosungwon proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress AT songyounghun proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress AT joickhyun proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress AT rakwalrandeep proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress AT kimyujin proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress AT kimsuntae proteomicanalysisrevealsacriticalroleoftheglycosylhydrolase17proteininpanaxginsengleavesundersaltstress |