Cargando…

Smartphone LiDAR Data: A Case Study for Numerisation of Indoor Buildings in Railway Stations

The combination of LiDAR with other technologies for numerisation is increasingly applied in the field of building, design, and geoscience, as it often brings time and cost advantages in 3D data survey processes. In this paper, the reconstruction of 3D point cloud datasets is studied, through an exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Catharia, Orphé, Richard, Franck, Vignoles, Henri, Véron, Philippe, Aoussat, Améziane, Segonds, Frédéric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965470/
https://www.ncbi.nlm.nih.gov/pubmed/36850565
http://dx.doi.org/10.3390/s23041967
_version_ 1784896771795714048
author Catharia, Orphé
Richard, Franck
Vignoles, Henri
Véron, Philippe
Aoussat, Améziane
Segonds, Frédéric
author_facet Catharia, Orphé
Richard, Franck
Vignoles, Henri
Véron, Philippe
Aoussat, Améziane
Segonds, Frédéric
author_sort Catharia, Orphé
collection PubMed
description The combination of LiDAR with other technologies for numerisation is increasingly applied in the field of building, design, and geoscience, as it often brings time and cost advantages in 3D data survey processes. In this paper, the reconstruction of 3D point cloud datasets is studied, through an experimental protocol evaluation of new LiDAR sensors on smartphones. To evaluate and analyse the 3D point cloud datasets, different experimental conditions are considered depending on the acquisition mode and the type of object or surface being scanned. The conditions allowing us to obtain the most accurate data are identified and used to propose which acquisition protocol to use. This protocol seems to be the most adapted when using these LiDAR sensors to digitise complex interior buildings such as railway stations. This paper aims to propose: (i) a methodology to suggest the adaptation of an experimental protocol based on factors (distance, luminosity, surface, time, and incidence) to assess the precision and accuracy of the smartphone LiDAR sensor in a controlled environment; (ii) a comparison, both qualitative and quantitative, of smartphone LiDAR data with other traditional 3D scanner alternatives (Faro X130, VLX, and Vz400i) while considering three representative building interior environments; and (iii) a discussion of the results obtained in a controlled and a field environment, making it possible to propose recommendations for the use of the LiDAR smartphone at the end of the numerisation of the interior space of a building.
format Online
Article
Text
id pubmed-9965470
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99654702023-02-26 Smartphone LiDAR Data: A Case Study for Numerisation of Indoor Buildings in Railway Stations Catharia, Orphé Richard, Franck Vignoles, Henri Véron, Philippe Aoussat, Améziane Segonds, Frédéric Sensors (Basel) Article The combination of LiDAR with other technologies for numerisation is increasingly applied in the field of building, design, and geoscience, as it often brings time and cost advantages in 3D data survey processes. In this paper, the reconstruction of 3D point cloud datasets is studied, through an experimental protocol evaluation of new LiDAR sensors on smartphones. To evaluate and analyse the 3D point cloud datasets, different experimental conditions are considered depending on the acquisition mode and the type of object or surface being scanned. The conditions allowing us to obtain the most accurate data are identified and used to propose which acquisition protocol to use. This protocol seems to be the most adapted when using these LiDAR sensors to digitise complex interior buildings such as railway stations. This paper aims to propose: (i) a methodology to suggest the adaptation of an experimental protocol based on factors (distance, luminosity, surface, time, and incidence) to assess the precision and accuracy of the smartphone LiDAR sensor in a controlled environment; (ii) a comparison, both qualitative and quantitative, of smartphone LiDAR data with other traditional 3D scanner alternatives (Faro X130, VLX, and Vz400i) while considering three representative building interior environments; and (iii) a discussion of the results obtained in a controlled and a field environment, making it possible to propose recommendations for the use of the LiDAR smartphone at the end of the numerisation of the interior space of a building. MDPI 2023-02-09 /pmc/articles/PMC9965470/ /pubmed/36850565 http://dx.doi.org/10.3390/s23041967 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Catharia, Orphé
Richard, Franck
Vignoles, Henri
Véron, Philippe
Aoussat, Améziane
Segonds, Frédéric
Smartphone LiDAR Data: A Case Study for Numerisation of Indoor Buildings in Railway Stations
title Smartphone LiDAR Data: A Case Study for Numerisation of Indoor Buildings in Railway Stations
title_full Smartphone LiDAR Data: A Case Study for Numerisation of Indoor Buildings in Railway Stations
title_fullStr Smartphone LiDAR Data: A Case Study for Numerisation of Indoor Buildings in Railway Stations
title_full_unstemmed Smartphone LiDAR Data: A Case Study for Numerisation of Indoor Buildings in Railway Stations
title_short Smartphone LiDAR Data: A Case Study for Numerisation of Indoor Buildings in Railway Stations
title_sort smartphone lidar data: a case study for numerisation of indoor buildings in railway stations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965470/
https://www.ncbi.nlm.nih.gov/pubmed/36850565
http://dx.doi.org/10.3390/s23041967
work_keys_str_mv AT cathariaorphe smartphonelidardataacasestudyfornumerisationofindoorbuildingsinrailwaystations
AT richardfranck smartphonelidardataacasestudyfornumerisationofindoorbuildingsinrailwaystations
AT vignoleshenri smartphonelidardataacasestudyfornumerisationofindoorbuildingsinrailwaystations
AT veronphilippe smartphonelidardataacasestudyfornumerisationofindoorbuildingsinrailwaystations
AT aoussatameziane smartphonelidardataacasestudyfornumerisationofindoorbuildingsinrailwaystations
AT segondsfrederic smartphonelidardataacasestudyfornumerisationofindoorbuildingsinrailwaystations