Cargando…

Nanobiotechnology-Enabled mRNA Stabilization

mRNA technology has attracted enormous interest due to its great therapeutic potential. Strategies that can stabilize fragile mRNA molecules are crucial for their widespread applications. There are numerous reviews on mRNA delivery, but few focus on the underlying causes of mRNA instability and how...

Descripción completa

Detalles Bibliográficos
Autores principales: Xian, He, Zhang, Yue, Yu, Chengzhong, Wang, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965532/
https://www.ncbi.nlm.nih.gov/pubmed/36839942
http://dx.doi.org/10.3390/pharmaceutics15020620
Descripción
Sumario:mRNA technology has attracted enormous interest due to its great therapeutic potential. Strategies that can stabilize fragile mRNA molecules are crucial for their widespread applications. There are numerous reviews on mRNA delivery, but few focus on the underlying causes of mRNA instability and how to tackle the instability issues. Herein, the recent progress in nanobiotechnology-enabled strategies for stabilizing mRNA and better delivery is reviewed. First, factors that destabilize mRNA are introduced. Second, nanobiotechnology-enabled strategies to stabilize mRNA molecules are reviewed, including molecular and nanotechnology approaches. The impact of formulation processing on mRNA stability and shelf-life, including freezing and lyophilization, are also briefly discussed. Lastly, our perspectives on challenges and future directions are presented. This review may provide useful guidelines for understanding the structure–function relationship and the rational design of nanobiotechnology for mRNA stability enhancement and mRNA technology development.