Cargando…
Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms
Reliable fault diagnosis and condition monitoring are essential for permanent magnet synchronous motor (PMSM) drive systems with high-reliability requirements. PMSMs can be subject to various types of damage during operation. Magnetic damage is a unique fault of PMSM and concerns the permanent magne...
Autores principales: | Pietrzak, Przemyslaw, Wolkiewicz, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965567/ https://www.ncbi.nlm.nih.gov/pubmed/36850353 http://dx.doi.org/10.3390/s23041757 |
Ejemplares similares
-
Machine Learning-Based Stator Current Data-Driven PMSM Stator Winding Fault Diagnosis
por: Pietrzak, Przemyslaw, et al.
Publicado: (2022) -
Vibration and current dataset of three-phase permanent magnet synchronous motors with stator faults
por: Jung, Wonho, et al.
Publicado: (2023) -
Analytical Modeling and Analysis of Permanent-Magnet Motor with Demagnetization Fault
por: Shi, Cenwei, et al.
Publicado: (2022) -
The impact of demagnetization on the feasibility of permanent magnet synchronous motors in industry applications
por: Adly, A.A., et al.
Publicado: (2019) -
Magnetization, demagnetization and calibration of permanent magnet systems
por: Steingroever, E, et al.
Publicado: (1997)