Cargando…
LC-ESI-MS/MS Analysis of Sulfolipids and Galactolipids in Green and Red Lettuce (Lactuca sativa L.) as Influenced by Sulfur Nutrition
Sulfur (S) deprivation leads to abiotic stress in plants. This can have a significant impact on membrane lipids, illustrated by a change in either the lipid class and/or the fatty acid distribution. Three different levels of S (deprivation, adequate, and excess) in the form of potassium sulfate were...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965601/ https://www.ncbi.nlm.nih.gov/pubmed/36835138 http://dx.doi.org/10.3390/ijms24043728 |
Sumario: | Sulfur (S) deprivation leads to abiotic stress in plants. This can have a significant impact on membrane lipids, illustrated by a change in either the lipid class and/or the fatty acid distribution. Three different levels of S (deprivation, adequate, and excess) in the form of potassium sulfate were used to identify individual thylakoid membrane lipids, which might act as markers in S nutrition (especially under stress conditions). The thylakoid membrane consists of the three glycolipid classes: monogalactosyl- (MGDG), digalactosyl- (DGDG), and sulfoquinovosyl diacylglycerols (SQDG). All of them have two fatty acids linked, differing in chain length and degree of saturation. LC-ESI-MS/MS served as a powerful method to identify trends in the change in individual lipids and to understand strategies of the plant responding to stress. Being a good model plant, but also one of the most important fresh-cut vegetables in the world, lettuce (Lactuca sativa L.) has already been shown to respond significantly to different states of sulfur supply. The results showed a transformation of the glycolipids in lettuce plants and trends towards a higher degree of saturation of the lipids and an increased level of oxidized SQDG under S-limiting conditions. Changes in individual MGDG, DGDG, and oxidized SQDG were associated to S-related stress for the first time. Promisingly, oxidized SQDG might even serve as markers for further abiotic stress factors. |
---|